3x^2-x+3=3căn(x^4+x^2+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề là \(\sqrt{\left(x+1\right)}+2\left(x+1\right)=x-1+\sqrt{\left(1-x\right)}+3\sqrt{1-x^2}\)?
DK \(x^3+1\ge0\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)\ge0\Leftrightarrow x\ge-1\)
ta thay x=-1 ko phai la nghiem => x>-1
pt <=> \(\left(x^2-5x-3\right)+3\left(\sqrt{x^3+1}-2\left(x+1\right)\right)=0\)
<=> \(\left(x^2-5x-3\right)+3\left(\frac{x^3+1-4x^2-8x-4}{\sqrt{x^3+1}+2\left(x+1\right)}\right)=0\)
<=> \(x^2-5x-3+3\left[\frac{\left(x+1\right)\left(x^2-5x+3\right)}{\sqrt{x^3+1}+2\left(x+1\right)}\right]=0\)
<=> \(\left(x^2-5x-3\right)\left(1+\frac{3\left(x+1\right)}{\sqrt{x^3+1}+2\left(x+1\right)}\right)=0\)
<=> x^2 -5x-3=0 ( do cai trong ngoac thu 2 vo nghiem vi X>-1)
<=> \(x=\frac{5\pm\sqrt{37}}{2}\) tmdk
Vay \(S=\left\{\frac{5-\sqrt{37}}{2};\frac{5+\sqrt{37}}{2}\right\}\)
bài này khá dễ đừng có nghĩ cao siêu
bình phương 2 vế
\(9x^4+x^2+9-6x^3-6x+18x^2=9x^4+9x^2+9\\ \Leftrightarrow6x^3-10x^2+6x=0\\ \Leftrightarrow2x\left(3x^2-5x+3\right)=0\\ \Rightarrow\left\{{}\begin{matrix}2x=0\Rightarrow x=0\\3x^2-5x+3=0\left(l\right)\end{matrix}\right.\)
phương trình sau loại do đenta < 0
vậy x=0 là nghiệm
ỏ mình wên :=D