K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2020

Ta có HPT : \(\hept{\begin{cases}2x+y=x^2\\2y+x=y^2\end{cases}}\)

\(\Leftrightarrow x^2-y^2=2x+y-2y-x\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=x-y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)

TH1 : \(x-y=0\)

\(\Leftrightarrow x=y\)

\(\Leftrightarrow2x+x=x^2\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=0\\x=y=3\end{cases}}\)

TH2 : \(x+y-1=0\)

\(\Leftrightarrow2\left(1-y\right)+y=\left(1-y\right)^2\)

\(\Leftrightarrow2-2y+y=1-2y+y^2\)

\(\Leftrightarrow y^2-y-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=\frac{1+\sqrt{5}}{2}\Leftrightarrow x=\frac{1-\sqrt{5}}{2}\\y=\frac{1-\sqrt{5}}{2}\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\end{cases}}\)

Vậy \(\left(x;y\right)\in\left\{\left(0;0\right);\left(3;3\right);\left(\frac{1-\sqrt{5}}{2};\frac{1+\sqrt{5}}{2}\right);\left(\frac{1+\sqrt{5}}{2};\frac{1-\sqrt{5}}{2}\right)\right\}\)

5 tháng 4 2020

\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)

\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)

\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)

\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)

\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)

Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)

18 tháng 7 2018

1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)

\(2y=-4\Rightarrow y=-2\)

                    \(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )

2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>

\(x+3x-2=6\)

\(4x=8\Rightarrow x=2\)

               \(\Rightarrow y=6-2=4\)

3)  \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2

\(3x-5+x=3\)

\(4x=8\Rightarrow x=2\)

                \(2y=3\Rightarrow y=\frac{3}{2}\)

4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )

\(5+y+3y=1\)

\(4y=-4\Rightarrow y=-1\)

                   \(\Rightarrow2x=4\Rightarrow x=2\)

mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...

Dùng cái đầu đi ạ

10 tháng 9 2020

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

31 tháng 12 2018

trừ cho nhau là xong

1 tháng 2 2019

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh 

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)