tìm x thuộc z để A đạt giá trị nhỏ nhất /x-3/ -7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Tìm x để A là số hữu tỉ.
để A là số hữu tỉ => x - 1 \(\ne\)0
=> x \(\ne\)1
vậy x thuộc Z và x \(\ne\) 1
`a,`
`A=3/(x-1)`
Để `A` là số hữu tỉ
`->x-1 \ne 0`
`->x\ne 0+1`
`-> x \ne 1`
Vậy `x \ne 1` để `A` là số hữu tỉ
`b,`
`A=3/(x-1) (x \ne 1)`
Để `A` thuộc Z
`->3` chia hết cho `x-1`
`->x-1` thuộc ước của `3 = {1;-1;3;-3}`
`->x` thuộc `{2;0;4;-2}` (Thỏa mãn)
Vậy `x` thuộc `{2; 0; 4;-2}` để `A` thuộc Z
`c,`
`A=3/(x-1) (x \ne 1)`
Để `A` lớn nhất
`->3/(x-1)` lớn nhất
`->x-1` nhỏ nhất
`->x-1=1` (Do `1` là số nguyên dương nhỏ nhất)
`->x=2` (Thỏa mãn)
Với `x=2`
`->A=3/(2-1)=3/1=3`
Vậy `max A=3` khi `x=2`
`d,`
`A=3/(x-1) (x \ne 1)`
Để `A` nhỏ nhất
`->3/(x-1)` nhỏ nhất
`->x-1` lớn nhất
`->x-1=-1` (Do `-1` là số nguyên âm lớn nhất)
`->x=0`
Với `x=0`
`-> A=3/(0-1)=3/(-1)=-3`
Vậy `min A=-3` khi `x=0`
a) \(A\) nhỏ nhất \(\Leftrightarrow\) x + 1 nhỏ nhất và x - 3 lớn nhất Mà x thuộc N ; x - 3 \(\ne\) 0 nên \(\Leftrightarrow\) x = 4. Khi đó \(A=\frac{4+1}{4-3}=5\) có GTNNN
b) \(A=\frac{x+1}{x-3}=\frac{x-3+4}{x-3}=1+\frac{4}{x-3}\) nguyên \(\Leftrightarrow x-3\inƯ\left(4\right)\)
\(\Leftrightarrow x-3\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Leftrightarrow x\in\left\{-1;1;2;4;5;7\right\}\)
Để A = | x - 3 | - 7 đạt giá trị nhỏ nhất
thì | x - 3 | đạt giá trị nhỏ nhất bằng 0 khi x = 3
Do đó A đạt giá trị nhỏ nhất = 0 - 7 = - 7 tại x = 3
Để \(|x-3|-7\) có GTNN thì \(|x-3|\)có GTNN
Mà \(|x-3|\ge0\)
\(\Leftrightarrow|x-3|-7\ge-7\)
Dâu ''='' xảy ra khi \(x-3=0\Leftrightarrow x=3\)
Vậy \(|x-3|-7\)có GTNN là \(-7\)khi và chỉ khi \(x=3\)