1,CMR với mọi số nguyên tố p,p>2 thì 4p+1 không phải là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
Do đó 4p + 1 là hợp số (.)
tick nhé
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)
\(1a.\)
Ta có: \(n^4+4=\left(n^2\right)^2+4n^2+4-4n^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)
Vì \(n^2+2n+2>n^2-2n+2\) với mọi \(n\in N\)
nên để \(n^4+4\) là số nguyên tố thì \(n^2-2n+2=1\) \(\Leftrightarrow\) \(\left(n-1\right)^2=0\) \(\Leftrightarrow\) \(n-1=0\) \(\Leftrightarrow\) \(n=1\)
Vậy, với \(n=1\) thì \(n^4+4\) là số nguyên tố
P = 2.3.4....a => P chia hết cho 3
=> P - 1 : 3 dư 2 => Ko là SCP
Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2
=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP
=> P - 1 và P + 1 Ko là SCP
a) ta có với n nguyên dương n2+n+1=n2+2n+1-n=(n+1)2-n
như vậy có n2<n2+n+1<n2+2n+1 hay n2<n2+n+1<(n+1)2
mà n2 và (n+1)2 là 2 số chính phương liên tiếp
=> n2+n+1 không là số chính phương với mọi n nguyên dương (đpcm)
Với mọi số chính phương lẻ ta luôn dễ dàng chứng minh nó chia 8 dư 1
Thật vậy, \(\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\)
Do \(k\left(k+1\right)\) là tích 2 số nguyên liên tiếp \(\Rightarrow4k\left(k+1\right)⋮8\)
\(\Rightarrow4k\left(k+1\right)+1\) chia 8 dư 1
Do \(p>2\Rightarrow p\) lẻ \(\Rightarrow p=2n+1\)
\(\Rightarrow4p+1=4\left(2n+1\right)+1=8n+5\) chia 8 dư 5 nên không thể là số chính phương lẻ (đpcm)