\(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(0,8-\frac{3}{4}\right)^2\)
Tính giá trị biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right).\\A = \left( {\frac{{30}}{{15}} + \frac{5}{{15}} - \frac{6}{{15}}} \right) - \left( {\frac{{105}}{{15}} - \frac{9}{{15}} - \frac{{20}}{{15}}} \right) - \left( {\frac{3}{{15}} + \frac{{25}}{{15}} - \frac{{60}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} - \left( {\frac{{ - 32}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} + \frac{{32}}{{15}}\\A = \frac{{ - 15}}{{15}}\\A = - 1\end{array}\)
b)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right)\\A = 2 + \frac{1}{3} - \frac{2}{5} - 7 + \frac{3}{5} + \frac{4}{3} - \frac{1}{5} - \frac{5}{3} + 4\\A = \left( {2 - 7 + 4} \right) + \left( {\frac{1}{3} + \frac{4}{3} - \frac{5}{3}} \right) + \left( { - \frac{2}{5} + \frac{3}{5} - \frac{1}{5}} \right)\\A = - 1 + 0 + 0 = - 1\end{array}\)
\(=\frac{-\frac{1}{8}-\frac{27}{64}.4}{-2+\frac{9}{16}-\frac{3}{8}}\)
\(=\frac{-\frac{1}{8}-\frac{27}{16.4}.4}{-2+\frac{9-6}{16}}\)
\(=\frac{-\frac{1}{8}-\frac{27}{16}}{-2+\frac{3}{16}}\)
\(=\frac{-\left(\frac{2+27}{16}\right)}{\frac{-32+3}{16}}\)
\(=\frac{-\frac{29}{16}}{\frac{-29}{16}}\)
\(=1\)
\(P=\left(-0,5-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right):\left(-2\right)\)
\(P=\left(-1,1\right):\left(-3\right)+\frac{1}{3}+\frac{1}{6}:\left(-2\right)\)
\(P=\frac{11}{30}+\frac{1}{3}+\left(-\frac{1}{12}\right)\)
\(P=\frac{37}{60}\)
\(Q=\left(\frac{2}{25}-1,008\right):\frac{4}{7}:\left[\left(3\frac{1}{4}-6\frac{5}{9}\right).2\frac{2}{17}\right]\)
\(Q=\left(-0,928\right):\frac{4}{7}:\left[\left(-\frac{119}{36}\right).2\frac{2}{17}\right]\)
\(Q=\left(-1,624\right):\left(-\frac{245}{36}\right)\)
\(Q=\frac{1044}{4375}\)
c) \(\left[3\frac{1}{6}-\left(0,06\cdot7\frac{1}{2}+6\frac{1}{4}\cdot0,24\right)\right]:\left(1\frac{2}{3}+2\frac{2}{3}\cdot1\frac{3}{4}\right)\)
\(=\left[\frac{19}{6}-\left(\frac{3}{50}\cdot\frac{15}{2}+\frac{25}{4}\cdot\frac{6}{25}\right)\right]:\left(\frac{5}{3}+\frac{8}{3}\cdot\frac{7}{4}\right)\)
\(=\left[\frac{19}{6}-\left(\frac{9}{20}+\frac{3}{2}\right)\right]:\left(\frac{5}{3}+\frac{14}{3}\right)\)
\(=\left(\frac{19}{6}-\frac{39}{20}\right):\frac{19}{3}=\frac{73}{60}:\frac{19}{3}=\frac{73}{60}\cdot\frac{3}{19}=\frac{73}{380}\)
Bài giải
\(c,\text{ }\left[3\frac{1}{6}-\left(0,06\cdot7\frac{1}{2}+6\frac{1}{4}\cdot0,24\right)\right]\text{ : }\left(1\frac{2}{3}+2\frac{2}{3}\cdot1\frac{3}{4}\right)\)
\(=\left[\frac{19}{6}-\left(\frac{3}{50}\cdot\frac{15}{2}+\frac{25}{4}\cdot\frac{6}{25}\right)\right]\text{ : }\left(\frac{5}{3}+\frac{8}{3}\cdot\frac{7}{4}\right)\)
\(=\left[\frac{19}{6}-\left(\frac{9}{20}+\frac{3}{2}\right)\right]\text{ : }\left(\frac{5}{3}+\frac{56}{12}\right)\)
\(=\left(\frac{19}{6}-\frac{39}{20}\right)\text{ : }\frac{19}{3}\)
\(=\left(\frac{190}{60}-\frac{117}{60}\right)\cdot\frac{3}{19}=\frac{73}{60}\cdot\frac{3}{19}=\frac{73}{380}\)
\(\begin{array}{l}a)\left( {\frac{2}{3} + \frac{1}{6}} \right):\frac{5}{4} + \left( {\frac{1}{4} + \frac{3}{8}} \right):\frac{5}{2}\\ = \left( {\frac{4}{6} + \frac{1}{6}} \right).\frac{4}{5} + \left( {\frac{2}{8} + \frac{3}{8}} \right).\frac{2}{5}\\ = \frac{5}{6}.\frac{4}{5} + \frac{5}{8}.\frac{2}{5}\\ = \frac{2}{3} + \frac{1}{4}\\ = \frac{8}{{12}} + \frac{3}{{12}}\\ = \frac{{11}}{{12}}\\b)\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\\ = \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{4}{{14}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{7}{4}.\frac{{ - 3}}{{14}}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{{ - 3}}{8}\\ = \frac{{ - 110}}{{27}} + \frac{{ - 3}}{8}\\ = \frac{{ - 880}}{{216}} + \frac{{ - 81}}{{216}}\\ = \frac{{ - 961}}{{216}}\end{array}\)
a) \(\left(\dfrac{3}{4}\right)^{-2}\cdot3^2\cdot12^0=16\)
b) \(\left(\dfrac{1}{12}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-2}=27\)
c) \(\left(2^{-2}\cdot5^2\right)^{-2}:\left(5\cdot5^{-5}\right)=16\)
=1.1.2.2.3.3.....9.9/2.2.3.3.4.4....10.10
=1/10.10
=1/100
k to nha
\(=\frac{17}{12}.\left(\frac{1}{20}\right)^2=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)