K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

\(P=\left(-0,5-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right):\left(-2\right)\)

\(P=\left(-1,1\right):\left(-3\right)+\frac{1}{3}+\frac{1}{6}:\left(-2\right)\)

\(P=\frac{11}{30}+\frac{1}{3}+\left(-\frac{1}{12}\right)\)

\(P=\frac{37}{60}\)

\(Q=\left(\frac{2}{25}-1,008\right):\frac{4}{7}:\left[\left(3\frac{1}{4}-6\frac{5}{9}\right).2\frac{2}{17}\right]\)

\(Q=\left(-0,928\right):\frac{4}{7}:\left[\left(-\frac{119}{36}\right).2\frac{2}{17}\right]\)

\(Q=\left(-1,624\right):\left(-\frac{245}{36}\right)\)

\(Q=\frac{1044}{4375}\)

8 tháng 2 2017

31/29

8 tháng 2 2017

\(=\frac{-\frac{1}{8}-\frac{27}{64}.4}{-2+\frac{9}{16}-\frac{3}{8}}\)

\(=\frac{-\frac{1}{8}-\frac{27}{16.4}.4}{-2+\frac{9-6}{16}}\)

\(=\frac{-\frac{1}{8}-\frac{27}{16}}{-2+\frac{3}{16}}\)

\(=\frac{-\left(\frac{2+27}{16}\right)}{\frac{-32+3}{16}}\)

\(=\frac{-\frac{29}{16}}{\frac{-29}{16}}\)

\(=1\)

\(P=\left(\dfrac{-1}{2}-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\dfrac{1}{6}:2\)

\(=\left(\dfrac{1}{2}+\dfrac{3}{5}\right):3+\dfrac{1}{3}-\dfrac{1}{12}\)

\(=\dfrac{11}{10}\cdot\dfrac{1}{3}+\dfrac{1}{4}\)

\(=\dfrac{11}{30}+\dfrac{1}{4}=\dfrac{22}{60}+\dfrac{15}{60}=\dfrac{37}{60}\)

\(Q=\left(\dfrac{2}{25}-\dfrac{126}{125}\right)\cdot\dfrac{7}{4}:\left[\dfrac{-119}{36}\cdot\dfrac{36}{17}\right]\)

\(=\dfrac{-116}{125}\cdot\dfrac{7}{4}:\left(-7\right)\)

\(=\dfrac{116}{125}\cdot\dfrac{7}{4}\cdot\dfrac{1}{7}=\dfrac{29}{125}\)

23 tháng 9 2020

a) \(\left(-\frac{3}{4}\right)^2:\left(\frac{5}{4}\right)^2+14,7-1\frac{9}{25}\)

\(=\left[\left(-\frac{3}{4}\right):\frac{5}{4}\right]^2+\frac{147}{10}-\frac{34}{25}\)

\(=\left[\left(-\frac{3}{4}\right)\cdot\frac{4}{5}\right]^2+\frac{147}{10}-\frac{34}{25}\)

\(=\left(-\frac{3}{5}\right)^2+\frac{147}{10}-\frac{34}{25}=\frac{9}{25}+\frac{147}{10}-\frac{34}{25}=\left(\frac{9}{25}-\frac{34}{25}\right)+\frac{147}{10}=-1+\frac{147}{10}=\frac{137}{10}\)

b) \(\left(2\frac{1}{3}-1,5\right):\left(-6\frac{1}{6}+5\frac{1}{2}\right)+2,75\)

\(=\left(\frac{7}{3}-\frac{3}{2}\right):\left(-\frac{37}{6}+\frac{11}{2}\right)+\frac{11}{4}\)

\(=\frac{5}{6}:\left(-\frac{2}{3}\right)+\frac{11}{4}=\frac{5}{6}\cdot\left(-\frac{3}{2}\right)+\frac{11}{4}=-\frac{5}{4}+\frac{11}{4}=\frac{3}{2}\)

23 tháng 9 2020

                                                                Bài giải

\(a,\text{ }\left(-\frac{3}{4}\right)^2\text{ : }\left(\frac{5}{4}\right)^2+14,7-1\frac{9}{25}\)

\(=\frac{9}{16}\text{ : }\frac{25}{16}+\frac{147}{10}-\frac{34}{25}\)

\(=\frac{18}{50}+\frac{735}{50}-\frac{68}{50}\)

\(=\frac{685}{50}=\frac{137}{10}\)

29 tháng 10 2020

Ta có: 

\(S=\left(\frac{3}{2}-\frac{2}{2^2}\right)\left(\frac{4}{3}-\frac{2}{3^2}\right)\left(\frac{5}{4}-\frac{2}{4^2}\right)...\left(\frac{101}{100}-\frac{2}{100^2}\right)\)

\(=\frac{4}{2^2}.\frac{10}{3^2}.\frac{18}{4^2}....\frac{100.101-2}{101^2}\)

\(=\frac{1.4}{2^2}.\frac{2.5}{3^2}.\frac{3.6}{4^2}.\frac{4.7}{5^2}...\frac{100.103}{101^2}\)

\(=\frac{1.4}{2^2}.\frac{2.5}{3^2}.\frac{3.6}{4^2}.\frac{4.7}{5^2}...\frac{98.101}{99^2}\frac{99.102}{100^2}\frac{100.103}{101^2}\)

\(=\frac{101.102.103}{1.2.3}\)