Giúp em b,c thôi ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc OBA+góc OCA=90+90=180 độ
=>ABOC nội tiếp
b: góc OIE=góc OCE=90 độ
=>OICE là tứ giác nội tiếp
=>góc OEI=góc OCI
=>góc OEI=góc OCB
OBAC nội tiếp
=>góc OCB=góc OAB
=>góc OEI=góc OAB
=>góc OEI=góc OAI
=>OIAE nội tiếp
c) Để hàm số cắt trục tung tại điểm có tung độ âm thì:
m - 5 < 0
m < 0+ 5
m < 5 (nhận)
Vậy m < 5 và m ≠ 1 thì đồ thị của hàm số cắt trục tung tại điểm có tung độ âm
c: Xét tứ giác AEHD có
\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)
Do đó: AEHD là hình chữ nhật
Suy ra: AH=ED(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAMN vuông tại A có AH là đường cao ứng với cạnh huyền MN, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{1}{DE^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)
c) Xét tứ giác ADHE có:
\(\widehat{HDA}=\widehat{DAE}=\widehat{AEH}=90^0\)
=> Tứ giác ADHE là hình chữ nhật
=> AH=DE
Xét tam giác AMN vuông tại A có đường cao AH
\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)(hệ thức lượng trong tam giác vuông)
Mà AH=DE(cmt)
\(\Rightarrow\dfrac{1}{DE^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)
thay \(x=3-2\sqrt{2}\) vào P ta có:
\(\dfrac{x+8}{\sqrt{x}+1}=\dfrac{3-2\sqrt{2}+8}{\sqrt{3-2\sqrt{2}}+1}=\dfrac{11-2\sqrt{2}}{\sqrt{2}-1+1}=\dfrac{11-2\sqrt{2}}{\sqrt{2}}\)
\(b,x=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\)
Thay vào P, ta được:
\(P=\dfrac{3-2\sqrt{2}+8}{\sqrt{\left(\sqrt{2}-1\right)^2}+1}=\dfrac{11-2\sqrt{2}}{\sqrt{2}}=\dfrac{11\sqrt{2}-4}{2}\)
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAKC vuông tại K có KF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AK^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AK là đường cao ứng với cạnh huyền BC, ta được:
\(KB\cdot KC=AK^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(AF\cdot AC=KB\cdot KC\)
b: Xét tứ giác AFKE có
\(\widehat{AFK}=\widehat{AEK}=\widehat{EAF}=90^0\)
Do đó: AFKE là hình chữ nhật
Suy ra: \(AK=FE\left(3\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAKB vuông tại K có KE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AK^2\left(4\right)\)
Từ \(\left(3\right),\left(4\right)\) suy ra \(AE\cdot AB=FE^2\)
c: Ta có: \(AF\cdot AC+AE\cdot AB+KB\cdot KC\)
\(=AK^2+AK^2+AK^2\)
\(=3\cdot AK^2=3\cdot FE^2\)
2c:
\(\dfrac{1}{\sqrt{5}-2}+\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{1}{2+\sqrt{5}}\)
\(=\dfrac{2+\sqrt{5}-\sqrt{5}+2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}+\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}\)
\(=\dfrac{4}{5-4}+\sqrt{6}=4+\sqrt{6}\)
Ý nghĩa:
Điện trở định mức của biến trở con chạy là 20\(\Omega\)
Cường độ dòng điện định mức của biến trở con chạy là 2A.
Hiệu điện thế: \(U=R.I=20.2=40V\)
Tiết diện: \(R=p\dfrac{l}{S}\Rightarrow S=\dfrac{p.l}{R}=\dfrac{1,10.10^{-6}.100}{20}=5,5.10^{-6}m^2\)
Chỗ tiết diện dây hình như sai rồi ấy ạ, R = 20.