Giải các phương trình sau:
\(a,x^2-6x+8=0\)
b, \(5x^2-3x+15=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,x^2+3x-2=0\\ \Delta=3^2-4.1.\left(-2\right)=17\\ =>\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
Mấy câu còn lại mình giải rồi
a) \(x^2-6x+8=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
a: 5-3x=6x+7
=>-3x-6x=7-5
=>-9x=2
=>\(x=-\dfrac{2}{9}\)
b: \(\dfrac{3x-2}{6}-5=3-\dfrac{2\left(x+7\right)}{4}\)
=>\(\dfrac{3x-2}{6}+\dfrac{x+7}{2}=8\)
=>\(\dfrac{3x-2+3\left(x+7\right)}{6}=8\)
=>3x-2+3x+14=48
=>6x+12=48
=>6x=36
=>\(x=\dfrac{36}{6}=6\)
c: \(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
=>\(\left(x-1\right)\left(5x+3\right)-\left(3x-8\right)\left(x-1\right)=0\)
=>(x-1)(5x+3-3x+8)=0
=>(x-1)(2x+11)=0
=>\(\left[{}\begin{matrix}x-1=0\\2x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{11}{2}\end{matrix}\right.\)
d: \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
=>\(\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
1a) 7x + 21 = 0
<=> 7x = -21
<=> x = -21/7
<=> x = -3
Vậy nghiệm của phương trình trên là S = {-3}
b) 12 - 6x = 0
<=> -6x = -12
<=> x = -12/-6
<=> x = 2
Vậy nghiệm của phương trình trên là S = {2}
c) 5x - 2 = 0
<=> 5x = 2
<=> x = 2/5
Vậy nghiệm của phương trình trên là S = {2/5}
d) -2x + 14 = 0
<=> -2x = -14
<=> x = -14/-2
<=> x = 7
Vậy nghiệm của phương trình là S = {7}
e) 0,25x + 1,5 = 0
<=> 0,25x = -1,5
<=> x = -1,5/0,25
<=> x = -6
Vậy nghiệm của phương trình là S = {-6}
2a) 3x + 1 = 7x - 11
<=> 3x - 7x = -11 - 1
<=> -4x = -12
<=> x = -12/-4
<=> x = 3
Vậy nghiệm của phương trình trên là S = {3}
b) 11 - 2x = x - 1
<=> -2x - x = -1 - 11
<=> -3x = -12
<=> x = -12/-3
<=> x = 4
Vậy nghiệm của phương trình là S = {4}
c) 5 - 3x = 6x + 7
<=> -3x - 6x = 7 - 5
<=> -9x = 2
<=> x = 2/-9
Vậy nghiệm của phương trình trên là S = {-2/9}
d) 15 - 8x = 9 - 5x
<=> -8x + 5x = 9 - 15
<=> -3x = 6
<=> x = 6/-3
<=> x = -2
Vậy nghiệm của phương trình trên là S = {-2}
~Sai thì thôi
#Học tốt!!!
~NTTH~
a: Ta có: \(x^2+3x+4=0\)
\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)
Do đó: Phương trình vô nghiệm
a) \(3\left(x-1\right)=5x+8\)
\(\Leftrightarrow\)\(3x-3=5x+8\)
\(\Leftrightarrow\)\(2x=-11\)
\(\Leftrightarrow\)\(x=-5,5\)
Vậy...
b) \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\)\(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(-x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
Vậy..
c) \(\left(2x+1\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow\)\(\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow\)\(3x\left(x+2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy...
d) \(2x^3+3x^3-5x=0\)
\(\Leftrightarrow\)\(5x^3-5x=0\)
\(\Leftrightarrow\)\(5x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(x=0\)hoặc \(x-1=0\)hoặc \(x+1=0\)
\(\Leftrightarrow\)\(x=0\) hoặc \(x=1\) hoặc \(x=-1\)
Vậy...
p/s: chỗ "hoặc" bn đưa về kí hiệu "[" cho mk nhé
e) \(x^2+2x-15=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vậy...
a. (x−1)(5x+3)=(3x−8)(x−1)(x−1)(5x+3)=(3x−8)(x−1)
⇔(x−1)(5x+3)−(3x−8)(x−1)=0⇔(x−1)[(5x+3)−(3x−8)]=0⇔(x−1)(5x+3−3x+8)=0⇔(x−1)(2x+11)=0⇔(x−1)(5x+3)−(3x−8)(x−1)=0⇔(x−1)[(5x+3)−(3x−8)]=0⇔(x−1)(5x+3−3x+8)=0⇔(x−1)(2x+11)=0
⇔x−1=0⇔x−1=0hoặc 2x+11=02x+11=0
+ x−1=0⇔x=1x−1=0⇔x=1
+ 2x+11=0⇔x=−5,52x+11=0⇔x=−5,5
Phương trình có nghiệm x = 1 hoặc x = -5,5
b. 3x(25x+15)−35(5x+3)=03x(25x+15)−35(5x+3)=0
⇔15x(5x+3)−35(5x+3)=0⇔(15x−35)(5x+3)=0⇔15x(5x+3)−35(5x+3)=0⇔(15x−35)(5x+3)=0
⇔15x−35=0⇔15x−35=0 hoặc 5x+3=05x+3=0
+ 15x−35=0⇔x=3515=7315x−35=0⇔x=3515=\(\frac{7}{3}\)
+ 5x+3=0⇔x=−355x+3=0⇔x=−\(\frac{3}{5}\)
Phương trình có nghiệm x=\(\frac{7}{3}\)x=\(\frac{7}{3}\) hoặc x=−\(\frac{3}{5}\)
a) \(x^2-6x+8=0\Leftrightarrow x^2-2x-4x+8=0\Leftrightarrow x\left(x-2\right)-4\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy \(S=\left\{2;4\right\}\)