K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2020

+ \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\Rightarrow\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)\) \(\Rightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)

Dấu "=" \(\Leftrightarrow b=c\)

+ Tương tự : \(\frac{1}{1+b}\ge2\sqrt{\frac{ca}{\left(1+c\right)\left(1+a\right)}}\) Dấu "=" \(\Leftrightarrow c=a\)

\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\) Dấu "=" \(\Leftrightarrow a=b\)

Do đó \(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}}=\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow abc\le\frac{1}{8}\) Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{2}\)

29 tháng 3 2016

bài này chứng minh bài toán phụ, khá là phức tạp, trình bày ra chắc chết quá

bài này mình thấy tren mạng đăng lên đó, có kết quả nhưng ko copy được

13 tháng 12 2019

Ta có:

 \(\frac{1}{1+a}=2-\frac{1}{1+b}-\frac{1}{1+c}=\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)\ge\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)

Tương tự:

\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\)

\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)

=> \(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

=> \(abc\le\frac{1}{8}\)

"=" xảy ra <=> a = b = c = 1/2

Vậy max P = abc = 1/8 đạt tại a = b = c =1/2

1 tháng 5 2016

Số học sinh nữ là:

         40x3/8 = 15(học sinh)

Số học sinh nam là:

           40-15=25(học sinh)

NV
13 tháng 7 2020

\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)

\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)

\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)

\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

NV
27 tháng 10 2019

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow b=\frac{2ac}{a+c}\)

\(P=\frac{a+b}{2a-b}+\frac{b+c}{2c-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{\frac{2ac}{a+c}+c}{2c-\frac{2ac}{a+c}}=\frac{a+3c}{2a}+\frac{3a+c}{2c}=1+\frac{3}{2}\left(\frac{a}{c}+\frac{c}{a}\right)\ge4\)

Dấu "=" xảy ra khi \(a=b=c\)

27 tháng 10 2019

Câu hỏi của CTV - Toán lớp 8 - Học toán với OnlineMath