K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2020

c) Gọi O là giao điểm của BE và AF 

Xét tam giác AHC có: M là TĐ của HC(gt) , E là TĐ của AC (gt)

\(\Rightarrow ME\)là đường trung bình của tam giác AHC

\(\Rightarrow ME//AH\left(tc\right)\)

Mà \(AH\perp BC\)

\(\Rightarrow ME\perp BC\)

\(\Rightarrow\widehat{BME}=90^0\)

Vì ABFE là hcn (cmt)

\(\Rightarrow BE\)cắt AF tại TĐ mỗi đường (tc) mà O là giao điểm của BE và AF(c.vẽ)

\(\Rightarrow O\)là TĐ của BE và AF

Xét tam giác \(BME\)vuông tại M có đường trung tuyến OM ứng với cạnh huyền BE 

\(\Rightarrow OM=\frac{1}{2}BE\left(tc\right)\)

Mà \(BE=AF\)(tc hcn) 

\(\Rightarrow OM=\frac{1}{2}AF\)

Xét tam giác AMF có trung tuyến OM ứng với cạnh AF và \(OM=\frac{1}{2}AF\left(cmt\right)\)

\(\Rightarrow\Delta AMF\)vuông tại M

\(\Rightarrow\widehat{FMA}=90^0\)

\(\Rightarrow AM\perp FM\)

5 tháng 4 2022

sửa đề nha

cho tam giác ABC vuông tại A , trên tia đối tia AB lấy đỉnh M sao cho AB=AM a. CMR : tam giác ABC = tam giác AMC

b. kẻ AH vuông góc với BC tại H kẻ AK vuông gói với MC tại K CMR : BH = MK

c. CMR : HK // BM

 

5 tháng 4 2022

Xét \(\Delta BACvà\Delta MACcó\)

AC:chung 

AM=AB(gt)

\(\widehat{MAC}=\widehat{BAC}\)( vì AC⊥BC)

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

b) Xét ΔDHB vuông tại D và ΔEHC vuông tại E có

HB=HC(ΔAHB=ΔAHC)

\(\widehat{DBH}=\widehat{ECH}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDHB=ΔEHC(cạnh huyền-góc nhọn)

nên \(\widehat{DHB}=\widehat{EHC}\)(hai góc tương ứng)

mà \(\widehat{DHB}=\widehat{FHC}\)(hai góc đối đỉnh)

nên \(\widehat{EHC}=\widehat{FHC}\)

mà tia HC nằm giữa hai tia HE,HF

nên HC là tia phân giác của \(\widehat{EHF}\)(đpcm)

3 tháng 2 2021

cảm ơn

a) Xét ΔADB vuông tại D và ΔADC vuông tại D có 

AB=AC(ΔABC cân tại A)

AD chung

Do đó: ΔADB=ΔADC(cạnh huyền-cạnh góc vuông)

10 tháng 3 2023

`a)`

+, Có `Delta ABC` cân tại `A(GT)=>hat(ABC)=hat(ACB)`

hay `hat(KBC)=hat(HCB)`

Xét `Delta BHC` và `Delta CKB` có :

`{:(hat(H_1)=hat(K_1)(=90^0)),(BC-chung),(hat(HCB)=hat(KBC)(cmt)):}}`

`=>Delta BHC=Delta CKB(c.h-g.n)(đpcm)`

+, Có `Delta BHC=Delta CKB(cmt)`

`=>HC=BK` ( 2 cạnh t/ứng )

mà `AB=AC(Delta ABC` cân tại `A)`

nên `AB-BK=AC-CH`

hay `AK=AH`

`=>Delta AHK` cân tại `A(đpcm)`

`b)`

Có `Delta ABC` cân tại `A(GT)=>hat(ABC)=(180^0-hat(A))/2` (1)

`Delta AHK ` cân tại `A(cmt)=>hat(K_2)=(180^0-hat(A))/2` (2)

Từ (1) và (2) suy ra : 

`hat(ABC)=hat(K_2)`

mà `2` góc này ở vị trí Đồng vị 

nên `KH////BC(đpcm)`