K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

2A=21+23+24+...2100

2A-1=1A=21+22+23+....+2100

A=2100-1

A=(2100-1):2

3 tháng 1 2020

Tìm n bạn ơi!

29 tháng 12 2022

a) 5 chia hết cho n - 1 khi n - 1 là ước của 5

Ư(5) = {-5; -1; 1; 5}

⇒n - 1 ∈ {-5; -1; 1; 5}

Do n là số tự nhiên nên

n ∈ {0; 2; 6}

b) Do n là số tự nhiên nên 2n + 1 > 0

20 chia hết cho 2n + 1

⇒2n + 1 ∈ Ư(20) = {1; 2; 4; 5; 10; 20}

⇒2n ∈ {0; 3; 5; 6; 11; 21}

Lại do n là số tự nhiên

⇒n ∈ {0; 3}

a: =>n-4 thuộc Ư(15)

mà n thuộc N

nên n-4 thuộc {-3;-1;1;3;5;15}

=>n thuộc {1;3;5;7;9;19}

b: =>2n-4+9 chia hết cho n-2

=>n-2 thuộc {1;-1;3;-3;9;-9}

mà n>=0

nên n thuộc {3;1;5;11}

21 tháng 11 2023

Lúa nước mất 1 NST cặp số 12

Lúa nước mất 1 cặp NST số 2

22 tháng 1 2018

A=25n.5+16.2n+2.2n

  =25n.5+18.2n

\(\equiv2^n.5+18.2^n\left(mod23\right)\)

\(\equiv2^n\left(18+5\right)=23.2^n\equiv0\left(mod23\right)\Rightarrowđpcm\)

23 tháng 3 2020

┌∩┐(◣_◢)┌∩┐
 

NV
15 tháng 3 2019

Đề sai, thử với \(n=0;1;2...\) đều không đúng

Đề đúng phải là: \(A=5^{2n+1}+2^{n+4}+2^{n+1}\)

Ta có: \(25\equiv2\left(mod23\right)\Rightarrow25^n\equiv2^n\left(mod23\right)\)

\(\Rightarrow5^{2n+1}=5.25^n\equiv5.2^n\left(mod23\right)\)

\(\Rightarrow A\equiv\left(5.2^n+2^{n+4}+2^{n+1}\right)\left(mod23\right)\)

\(5.2^n+2^{n+4}+2^{n+1}=5.2^n+16.2^n+2.2^n=23.2^n\equiv0\left(mod23\right)\)

\(\Rightarrow A\equiv0\left(mod23\right)\Rightarrow A⋮23\)

13 tháng 11 2019

Đáp án B

6 tháng 3 2017

10 tháng 8 2023

\(1+2+2^2+2^3+...+2^n=357680\)

\(\Leftrightarrow2\cdot\left(1+2+2^2+...+2^n\right)=2\cdot357680\)

\(\Leftrightarrow2+2^2+2^3+2^4+...+2^{n+1}=2\cdot357680\)

\(\Leftrightarrow\left(2+2^2+...+2^{n+1}\right)-\left(1+2+2^2+...+2^n\right)=2\cdot357680-357680\)

\(\Leftrightarrow\left(2-2\right)+\left(2^2-2^2\right)+...+\left(2^n-2^n\right)+\left(2^{n+1}-1\right)=357680\)

\(\Leftrightarrow2^{n+1}-1=357680\)

\(\Leftrightarrow2^{n+1}=357681\)

Xem lại đề 

10 tháng 8 2023

\(1+2+2^2+2^3+...+2^n=357680\)

\(\Rightarrow\dfrac{2^{n+1}-1}{2-1}=357680\)

\(\Rightarrow2^{n+1}=357680+1\)

\(\Rightarrow2^{n+1}=357681\Rightarrow n+1=\sqrt[]{357681}\Rightarrow n=\sqrt[]{357681}-1\)