Giải phương trình sau
2y2 + 12y + 16 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài: Giải hệ phương trình:
\(\left\{{}\begin{matrix}y^3-12y-x^3+6x^2-16=0\left(1\right)\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\left(2\right)\end{matrix}\right.\).
Giải:
ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le4\\-2\le y\le2\end{matrix}\right.\).
\(\left(1\right)\Leftrightarrow y^3-12y=\left(x-2\right)^3-12\left(x-2\right)\)
\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+\left(x-2\right)y+y^2-12\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y+2\\x^2+xy+y^2-4x-2y-8=0\end{matrix}\right.\).
+) TH1: \(x=y+2\): Thay vào (2) ta được:
\(4y^2+2\sqrt{4-y^2}-5\sqrt{4\left(y+2\right)-\left(y+2\right)^2}+6=0\)
\(\Leftrightarrow4y^2+2\sqrt{4-y^2}-5\sqrt{4-y^2}+6=0\)
\(\Leftrightarrow4y^2+6=3\sqrt{4-y^2}\)
\(\Leftrightarrow\left(4y^2+6\right)^2=9\left(4-y^2\right)\)
\(\Leftrightarrow16y^4+57y^2=0\)
\(\Leftrightarrow y=0\Rightarrow x=2\) (TMĐK).
+) TH2: \(x^2+xy+y^2-4x-2y-8=0\):
\(\Leftrightarrow\left(x-2\right)^2+y^2+\left(x-2\right)y=12\).
Do VT \(\le12\) (Đẳng thức xảy ra khi và chỉ khi x = 4; y = 2 hoặc x = 0; y = -2).
Do đó \(\left[{}\begin{matrix}x=4;y=2\\x=0;y=-2\end{matrix}\right.\).
Thử lại không có gt nào thỏa mãn.
Vậy...
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) thì pt đầu trở thành:
\(\dfrac{a^2-b^2}{2}-4b^2+3b=a\Leftrightarrow a^2-9b^2+6b=2a\)
\(\Leftrightarrow\left(a-3b\right)\left(a+3b\right)-2\left(a-3b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a+3b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3b\\a=2-3b\end{matrix}\right.\) \(\Rightarrow...\)
\(x^3-7x^2y+16xy^2-12y^3=0\)
\(\Leftrightarrow\left(x-3y\right)\left(x-2y\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=3y\end{matrix}\right.\)
Thế xuống pt dưới giải đơn giản
Cách giải của bạn Lê Nhật Khôi có phần khồn đúng nhưng nó đã gợi cho mình ý tưởng như này
\(HPT\Leftrightarrow\hept{\begin{cases}\left(1-x\right)\left(x^2+y^2+1\right)=y\\2y\left(y+3\right)^2=2-z\\\left(z-2\right)\left(z+1\right)^2=1-x\end{cases}}\)
\(\Rightarrow-2y\left(y+3\right)^2\left(z+1\right)^2\left(x^2+y^2+1\right)=y\Leftrightarrow y\left[2\left(y+3\right)^2\left(z+1\right)^2\left(x^2+y^2+1\right)+1\right]=0\)
\(\Rightarrow y=0\Rightarrow x=1\Rightarrow\orbr{\begin{cases}z=-1\\z=2\end{cases}}\)
\(\left\{{}\begin{matrix}12x+12y=1\\4x+14y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=\dfrac{1}{12}\\x+\dfrac{7}{2}y=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}y=\dfrac{1}{6}\\x+y=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{15}\\x+y=\dfrac{1}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{60}\\y=\dfrac{1}{15}\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm \(x=\dfrac{1}{60},y=\dfrac{1}{15}\)
\(2y^2+12y+16=0\Rightarrow2\left(y^2+6y+8\right)=0\Rightarrow2\left(y^2+6y+9-1\right)=0\)
\(\Rightarrow2\left(\left(y+3\right)^2-1\right)=2\left(y+3-1\right)\left(y+3+1\right)=0\Rightarrow....\)(tự làm tiếp nha bạn)
\(2y^2+12y+16=0\)\(\Leftrightarrow2\left(y^2+6y+8\right)=0\)
\(\Leftrightarrow y^2+6y+8=0\)\(\Leftrightarrow y^2+2y+4y+8=0\)
\(\Leftrightarrow y\left(y+2\right)+4\left(y+2\right)=0\)\(\Leftrightarrow\left(y+2\right)\left(y+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y+2=0\\y+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=-2\\y=-4\end{cases}}\)
Vậy \(x=-2\)hoặc \(x=-4\)