K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

\(a,\frac{21}{36}.\frac{5}{2}-\frac{7}{12}.\frac{2}{7}+\left(2018-2019\right)^0\)

=\(\frac{7}{12}.\frac{5}{2}-\frac{7}{12}.\frac{2}{7}+\left(-1\right)\)

= \(\frac{7}{12}.\left(\frac{5}{2}+\frac{2}{7}\right)+\left(-1\right)\)

=\(\frac{7}{12}.\frac{39}{14}+\left(-1\right)\)

=\(\frac{13}{8}+\left(-1\right)\)

= \(\frac{5}{8}\)

\(b,-12\frac{1}{3}-\frac{5}{7}+7\frac{1}{3}+1\frac{5}{7}+1^{2019}\)

=\(-\frac{37}{3}+\frac{-5}{7}+\frac{22}{3}+\frac{12}{7}+1\)

=\(\left(\frac{-37+22}{3}\right)+\left(\frac{-5+12}{7}\right)+=1\)

= \(-5+1+1\)

=\(-3\)

23 tháng 6 2019

câu a sai

23 tháng 3 2019

Ta có :

\(A=\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{2019^2}< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2018.2020}\)

Cho \(S=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2018.2020}\)

\(\Rightarrow S=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2018.2020}\right)\)

\(\Leftrightarrow S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)

\(\Leftrightarrow S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2020}\right)=\frac{1009}{4040}< \frac{1}{2}\)

Mà A < S ⇒ đpcm

Y
18 tháng 4 2019

\(5A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)

\(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)

\(\Rightarrow4A=5A-A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)

Đặt \(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

Khi đó \(4A=B-\frac{99}{5^{100}}< B\)

\(5B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}\)

\(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}+\frac{1}{5^{99}}\)

\(\Rightarrow4B=5B-B=1-\frac{1}{5^{99}}\)

\(\Rightarrow B=\frac{1}{4}-\frac{1}{4\cdot5^{99}}< \frac{1}{4}\)

\(\Rightarrow4A < B\Rightarrow4A< \frac{1}{4}\)

\(\Rightarrow A< \frac{1}{16}\) ( đpcm )

Y
18 tháng 4 2019

2. \(M=\left(1+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(M=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)

\(\Rightarrow\left(M-N\right)^3=0\)

13 tháng 8 2019

bn có thể tham khảo ở sách vũ hữu binh nha

20 tháng 4 2019

M<1/1.2+1/2.3+...+1/2019.2020=1-1/2020<1<2\(\sqrt{2}\)
 

Y
18 tháng 4 2019

+ \(n^3=n\cdot n^2>n\left(n^2-1\right)\)

\(\Rightarrow n^3>n\left(n^2+n-n-1\right)\)

\(\Rightarrow n^3>n\left[n\left(n+1\right)-\left(n-1\right)\right]\)

\(\Rightarrow n^3>n\left(n-1\right)\left(n+1\right)\)\(\Rightarrow\frac{1}{n^3}< \frac{1}{\left(n-1\right)n\left(n+1\right)}\)

\(\Rightarrow\frac{1}{n^3}< \frac{1}{2}\left[\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}\right]=\frac{1}{2}\left(\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)

Do đó : \(B< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{2018\cdot2019\cdot2020}\)

\(\Rightarrow B< \frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\right)\)

\(\Rightarrow B< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{2019\cdot2020}\right)< \frac{1}{4}\)