1.Tìm x
a) (-3)^x / 81=-27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
\(\frac{x+1}{3}+\frac{x+1}{9}+\frac{x+1}{27}+\frac{x+1}{81}=\left(x+1\right)\times\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\right)\)
\(=\left(x+1\right)\times\frac{40}{81}=\frac{56}{81}\text{ nên }x+1=\frac{56}{40}=\frac{7}{5}\)
vậy \(x=\frac{7}{5}-1=\frac{2}{5}\)
a) \(3^{a+1}=81\)
\(3^{a+1}=3^4\)
\(a+1=4\)
\(a=3\)
b) \(\left(x-1\right)^3=27\)
\(\left(x-1\right)^3=3^3\)
\(x-1=3\)
\(x=4\)
\(a,3^{a+1}=81\\ \Rightarrow3^{a+1}=3^4\\ \\ \Rightarrow a+1=4\\ \Rightarrow a=3.\\ b,\left(x-1\right)^3=27\\ \Rightarrow\left(x-1\right)^3=3^3\\ \Rightarrow x-1=3\\ \Rightarrow x=4.\)
a)\(\left(\frac{3}{5}\right)^5\times x=\left(\frac{3}{7}\right)^7\)
\(\Leftrightarrow\frac{3^5}{5^5}\times x=\frac{3^7}{7^7}\)
\(\Leftrightarrow x=\frac{3^7}{7^7}:\frac{3^5}{5^5}\)
\(\Leftrightarrow x=\frac{3^7\times5^5}{7^7\times3^5}\)
\(\Leftrightarrow x=\frac{3^2\times5^5}{7^7}\)
b)\(\left(\frac{-1}{3}\right)^3\times x=\frac{1}{81}\)
\(\Leftrightarrow\frac{\left(-1\right)^3}{3^3}\times x=\frac{1}{3^4}\)
\(\Leftrightarrow x=\frac{1}{3^4}:\frac{-1}{3^3}\)
\(\Leftrightarrow x=\frac{1\times3^3}{3^4\times\left(-1\right)}\)
\(\Leftrightarrow x=\frac{1}{-3}\)
c)\(\Leftrightarrow\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{3}+\frac{1}{2}\)
\(\Leftrightarrow x=\frac{5}{6}\)
d)\(\Leftrightarrow\left(x+\frac{1}{2}\right)^4=\left(\frac{2}{3}\right)^4\)
\(\Leftrightarrow x+\frac{1}{2}=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{2}{3}-\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{6}\)
\(x+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}=2\)
\(\Leftrightarrow x+\dfrac{121}{81}=2\)
hay \(x=\dfrac{41}{81}\)
a: x=2/5*15=6
b: =>x-7=15
=>x=22
c: =>3/4:x+1/2*4=4
=>3/4:x=4-2=2
=>x=3/8
\(\frac{\left(-3\right)^x}{81}=-27\)
\(\Leftrightarrow\left(-3\right)^x=\left(-27\right).81\)
\(\Leftrightarrow\left(-3\right)^x=-2187\)
\(\Leftrightarrow\left(-3\right)^7=-2187\)
\(\Leftrightarrow x=7\)