K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đây là đề bài: Kiểm tra hộ mik lời giải, nếu có cách khác các bn góp ý cho mik nha, thnks nhiều! Có \(P=\dfrac{2}{x^2+y^2}+\dfrac{35}{xy}+2xy\\ \Leftrightarrow P=\left(\dfrac{2}{x^2+y^2}+\dfrac{1}{xy}\right)+\dfrac{2}{xy}+\left(\dfrac{32}{xy}+2xy\right)\) Xét nhóm 1: Áp dụng BĐT\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\left(1\right)\ge2\left(\dfrac{4}{\left(x+y\right)^2}\right)\ge2\left(\dfrac{4}{4^2}\right)=\dfrac{1}{2}\Rightarrow...
Đọc tiếp

Đây là đề bài:Bài tập Toán

Kiểm tra hộ mik lời giải, nếu có cách khác các bn góp ý cho mik nha, thnks nhiều!

\(P=\dfrac{2}{x^2+y^2}+\dfrac{35}{xy}+2xy\\ \Leftrightarrow P=\left(\dfrac{2}{x^2+y^2}+\dfrac{1}{xy}\right)+\dfrac{2}{xy}+\left(\dfrac{32}{xy}+2xy\right)\)

Xét nhóm 1: Áp dụng BĐT\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\left(1\right)\ge2\left(\dfrac{4}{\left(x+y\right)^2}\right)\ge2\left(\dfrac{4}{4^2}\right)=\dfrac{1}{2}\Rightarrow Min\left(1\right)=\dfrac{1}{2}\Leftrightarrow x=y\\\)

Xét nhóm 2: Vì \(x+y\le4\Rightarrow2\sqrt{xy}\le4\Rightarrow xy\le4\Rightarrow\dfrac{1}{xy}\ge\dfrac{1}{4}\Rightarrow Min\left(2\right)=\dfrac{1}{2}\Leftrightarrow xy=4\\ \)

Xét nhóm 3:Áp dụng BĐT Cô-si ta được:\(\dfrac{32}{xy}+2xy\ge2\sqrt{\dfrac{32}{xy}\cdot2xy}=16\Rightarrow Min\left(3\right)=16\Leftrightarrow x=y\\ \)

Từ các NX trên\(\Rightarrow MinP=\dfrac{1}{2}+\dfrac{1}{2}+16=17\left(ĐK:\right)x=y;xy=4hayx=y=2\)

0
Đặt y=3-x, bài toán trở thành tìm min \(P=x^4+y^4+6x^2y^2\), trong đó x và y là các số thực thỏa mãn hệ \(\int^{x+y=3}_{x^2+y^2=5}\Rightarrow\int^{x^2+y^2+2xy=9}_{x^2+y^2\ge5}\)  \(\Rightarrow\left(x^2+y^2\right)+4\left(x^2+y^2+2xy\right)\ge5+4.9=41\)\(\Rightarrow5\left(x^2+y^2\right)+4\left(2xy\right)\ge41\)Lại có \(16\left(x^2+y^2\right)^2+25\left(2xy\right)^2\ge40\left(x^2+y^2\right)\left(2xy\right)\) (theo bất đẳng thức cosi) (1)Dấu bằng xảy ra...
Đọc tiếp

Đặt y=3-x, bài toán trở thành tìm min \(P=x^4+y^4+6x^2y^2\), trong đó x và y là các số thực thỏa mãn hệ \(\int^{x+y=3}_{x^2+y^2=5}\Rightarrow\int^{x^2+y^2+2xy=9}_{x^2+y^2\ge5}\)  \(\Rightarrow\left(x^2+y^2\right)+4\left(x^2+y^2+2xy\right)\ge5+4.9=41\)

\(\Rightarrow5\left(x^2+y^2\right)+4\left(2xy\right)\ge41\)

Lại có \(16\left(x^2+y^2\right)^2+25\left(2xy\right)^2\ge40\left(x^2+y^2\right)\left(2xy\right)\) (theo bất đẳng thức cosi) (1)

Dấu bằng xảy ra khi \(4\left(x^2+y^2\right)=5\left(2xy\right)\)

Cộng 2 vế của (1) với \(25\left(x^2+y^2\right)^2+16\left(2xy\right)^2\) ta có

\(41\left(\left(x^2+y^2\right)^2+\left(2xy\right)^2\right)\ge\left(5\left(x^2+y^2\right)+4\left(2xy\right)\right)^2\ge41^2\)

\(\Rightarrow\left(x^2+y^2\right)^2+\left(2xy\right)^2\ge41\Leftrightarrow x^4+y^4+6x^2y^2\ge41\)

Vậy min =41, dấu bằng xảy ra khi x=1 hoặc x=2

0
14 tháng 11 2017

Đặt S=x+y;P=xy giải ra :V

Bài 2:a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) \(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) \(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) \(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) \(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) Có: \(\left|y+3\right|\ge0\) \(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) Do...
Đọc tiếp

Bài 2:

a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) 

\(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) 

\(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) 

\(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) 

\(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) 

Có: \(\left|y+3\right|\ge0\) 

\(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) 

Do đó: \(\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]=0\) 

\(\Leftrightarrow\hept{\begin{cases}y+3=0\\x+y=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\) 

b. \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\) 

\(\Leftrightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+\left[2\left(x^2-5x-2012\right)\right]^2=0\) 

\(\Leftrightarrow\left(2x^2+x-2013-2x^2+10x+4024\right)^2=0\) 

\(\Leftrightarrow\left(11x+2011\right)^2=0\) 

\(\Leftrightarrow11x+2011=0\) 

\(\Leftrightarrow x=-\frac{2011}{11}\) 

0

đăng lên làm j z

28 tháng 2 2020

giải luôn à, tiện thật

a,ta có:(x2+7x+3)2=x4+14x3+55x2+42x+9(8x+4)(x2+5x+2)=8x3+44x2+36x+8=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8<=>x4+6x3+11x2+6x+1=0xét x=0 ko phải no của ptxét x khác 0\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)d,xét n=1=> mệnh đề luôn đúnggiả sử mệnh đề...
Đọc tiếp

a,

ta có:

(x2+7x+3)2=x4+14x3+55x2+42x+9

(8x+4)(x2+5x+2)=8x3+44x2+36x+8

=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8

<=>x4+6x3+11x2+6x+1=0

xét x=0 ko phải no của pt

xét x khác 0

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)

d,

xét n=1=> mệnh đề luôn đúng

giả sử mệnh đề đúng với n=k

ta sẽ cm nó đúng với n=k+1

với n=k+1

=>(n+1)(n+2)..(n+n)=2n(n+1)(n+2)...(2n-1)

=2(k+1)(k+2).....2k chia hết cho 2k+1

=>(n+1)(n+2)(n+3)...(n+n) chia hết cho 2n

c,

ta có:

\(\left(1+x\right)\left(1+\frac{y}{x}\right)=1+x+y+\frac{y}{x}\ge1+y+2\sqrt{y}=\left(\sqrt{y}+1\right)^2\)

\(\Rightarrow\left(1+x\right)\left(1+\frac{y}{x}\right)\left(1+\frac{9}{\sqrt{y}}\right)^2\ge\left[\left(\sqrt{y}+1\right)\left(1+\frac{9}{\sqrt{y}}\right)\right]^2\)

\(=\left(\sqrt{y}+\frac{9}{\sqrt{y}}+10\right)^2\ge\left(6+10\right)^2=256\left(Q.E.D\right)\)

dấu = xảy ra khi y=9;x=3

b,

x7+xy6=y14+y8

<=>(x7-y14)+(xy6-y8)=0

<=>(x-y2)(x+y2)+y6(x-y2)=0

<=>(x-y2)(x+y2+y6)=0

xét x=y2

\(\Rightarrow\sqrt{4x+5}+\sqrt{y^2+8}=\sqrt{4y^2+5}+\sqrt{y^2-1}\)

\(\Rightarrow\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)

\(\Rightarrow\left(\sqrt{4y^2+5}-3\right)+\left(\sqrt{y^2+8}-3\right)=0\)

\(\Rightarrow\frac{4y^2-4}{\sqrt{4y^2+5}+3}+\frac{y^2-1}{\sqrt{y^2+8}+3}=0\)

\(\Rightarrow\left(y^2-1\right)\left(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}\right)=0\)

\(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}>0\Rightarrow y^2=1\Rightarrow\left(x;y\right)=\left(1;1\right);\left(1;-1\right)\)

xét x+y2+y6=0

<=>x=-y2-y6

lại có:

x7+xy6=y14+y8

<=>x(x6+y6)=y14+y8

<=>-(y2+y6)(x6+y6)=y14+y8

mà \(-\left(y^2+y^6\right)\left(x^6+y^6\right)\le0\le y^{14}+y^8\)

<=>y=0=>x=0(ko thỏa mãn)

vậy nghiệm của pt:(x;y)=(1;-1);(1;1)

1
14 tháng 10 2017

câu hệ sao từ x^7-y^14 sao xuống đc (x-y^2)(x+y^2) ?