K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

Áp dụng t/c của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Xét a/b+c và c/a+b có:

  \(\frac{a}{b+c}=\frac{1}{2}\Rightarrow b+c=2a\)

  \(\frac{b}{c+a}=\frac{1}{2}\Rightarrow a+c=2b\)  

   \(\Leftrightarrow a+c-b+c=2b-2a\) \(\Leftrightarrow a-b=2b-2a\Leftrightarrow a=2b-2a+b=3b-2a\)                                      \(\Leftrightarrow3c-2a-a=0\Leftrightarrow3c-3a=0\)\(\Leftrightarrow c=a\)  (1)

  Ta lại có:\(\frac{c}{a+b}=\frac{1}{2}\Leftrightarrow a+b=2c\)

              \(\Rightarrow a+b-a-c=2c-2b\Leftrightarrow b-c=2c-2b\)

              \(\Leftrightarrow b=2c-2b+c=3c-2b\)

              \(\Leftrightarrow3c-2b-b=0\Leftrightarrow3c-3b=0\Leftrightarrow c=b\)   (2)

Từ (1) và (2) \(\Rightarrow a=b=c\)

17 tháng 11 2023

A+B

=a+b-5+b-c-9

=a+2b-c-14

C+D

=b-c-4-b+a

=-c+a-4

=>A+B<>C+D nha bạn

22 tháng 5 2015

Từ(1)=>a2=1-b2-c2_<1 =>\a\_<1 =>-1_<a_<1

Tương tự;-1_<a,b,c_<1

Lấy(1)-(2) có

a2(1-a)+b2(1-b)+c2(1-c)=0 (3)

VÌ a2(1-a)>_0;b2(1-b)>_0;c2(1-c)>_0      Nên từ (3) suy ra;

a2(1-a)=b2(1-b)=c2(1-c)=0

=>a,b,c hoặc bằng 0 hoặc bằng 1

Từ (1)=>a,b,c có 1 số bằng 1 còn 2 số bằng 0

=>a+b2+c3=0(đpcm)

 

 

 

27 tháng 9 2019

Từ(1)=>a2=1-b2-c2_<1 =>\a\_<1 =>-1_<a_<1

Tương tự;-1_<a,b,c_<1

Lấy(1)-(2) có

a2(1-a)+b2(1-b)+c2(1-c)=0 (3)

VÌ a2(1-a)>_0;b2(1-b)>_0;c2(1-c)>_0      Nên từ (3) suy ra;

a2(1-a)=b2(1-b)=c2(1-c)=0

=>a,b,c hoặc bằng 0 hoặc bằng 1

Từ (1)=>a,b,c có 1 số bằng 1 còn 2 số bằng 0

=>a+b2+c3=0(đpcm)

Ta có : a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
Ta có : a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d)
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d

10 tháng 8 2016

a)a2+b2+c2+3=2(a+b+c)

=>a2+b2+c2+1+1+1-2a-2b-2c=0

=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0

=>(a-1)2+(b-1)2+(c-1)2=0

=>a-1=b-1=c-1=0 <=>a=b=c=1 

-->Đpcm

b)(a+b+c)2=3(ab+ac+bc)

=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0 

=>a2+b2+c2-ab-ac-bc=0

=>2a2+2b2+2c2-2ab-2ac-2bc=0 

=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0

=>(a-b)2+(b-c)2+(c-a)2=0 

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

c)a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

=>2a2+2b2+c2=2ab+2bc+2ca

=>2a2+2b2+c2-2ab-2bc-2ca=0

=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0

=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0

=>(a-b)2+(b-c)2+(a-c)2=0

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm