Tìm dư trong phép chia:
f(x) = x7 cho g(x) = x3+ x2+ x+ 1
Các bạn làm nhanh nha, mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Khi f(3)
=> 5 . 32 - 1
= 5 . 9 - 1
= 45 - 1
= 44
Khi f(-2)
=> 5 . ( -2 )2 - 1
= 5 . 4 - 1
= 20 - 1
= 19
b,
Khi f(x) = 79
=> 5x2 - 1 = 79
5x2 = 79 + 1
5x2 = 80
=> x2 = 80 : 5
x2 = 16
x2 = 42
=> x = 4
a)\(f\left(3\right)=5\cdot3^2-1=5\cdot9-1=45-1=44\)
\(f\left(-2\right)=5\cdot\left(-2\right)^2-1=5\cdot4-1=20-1=19\)
b)\(f\left(x\right)=79\Leftrightarrow5x^2-1=79\)
\(\Leftrightarrow5x^2=80\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow x=\pm4\)
Rõ ràng đa thức \(x^3-1\) chia hết cho đa thức \(x^2+x+1\).
Ta tách: \(x^9+x^6+x^3+1=\left(x^9-1\right)+\left(x^6-1\right)+\left(x^3-1\right)+4=\left(x^3-1\right)\left(x^6+x^3+1\right)+\left(x^3-1\right)\left(x^3+1\right)+\left(x^3-1\right)+4\).
Từ đây suy ra đa thức đó chia cho đa thức \(x^2+x+1\) được đa thức dư là 4.
d: Ta có: f(x):g(x)
\(=\dfrac{x^3-2x^2+3x+5}{x+1}\)
\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-1}{x+1}\)
\(=x^2-3x+6+\dfrac{-1}{x+1}\)
Để f(x) chia hết cho g(x) thì \(x+1\in\left\{1;-1\right\}\)
hay \(x\in\left\{0;-2\right\}\)
a: \(f\left(x\right)+g\left(x\right)=2x^3-2x^2+4x\)
b: \(f\left(x\right)-g\left(x\right)=-2x^2+2x+2\)
a) \(g\left(x\right)=x+1=x-\left(-1\right)\)
Áp dụng định lý Bê-du có số dư của \(f\left(x\right)\)cho \(g\left(x\right)\)là :
\(f\left(-1\right)=1+\left(-1\right)^2+\left(-1\right)^4+....+\left(-1\right)^{100}\)
\(=1+1+1+...+1\)
( \(\frac{100-0}{2}+1=51\)số \(1\))
\(=51\)
Vậy ...
b: Ta có: f(x):g(x)
\(=\dfrac{x^3-2x^2+3x+a}{x+1}\)
\(=\dfrac{x^3+x^2-3x^2-3x+6x+6+a-6}{x+1}\)
\(=x^2-3x+6+\dfrac{a-6}{x+1}\)
Để f(x):g(x) là phép chia hết thì a-6=0
hay a=6
a: Thay a=3 vào f(x), ta được:
\(f\left(x\right)=x^3-2x^2+3x+3\)
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3-2x^2+3x+3}{x+1}\)
\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-3}{x+1}\)
\(=x^2-3x+6-\dfrac{3}{x+1}\)
\(f\left(x\right)=x^7\)
\(=x^7+x^6+x^5+x^4-x^6-x^5-x^4-x^3+x^3+x^2+x+1-x^2-x-1\)
\(=x^4\left(x^3+x^2+x+1\right)-x^3\left(x^3+x^2+x+1\right)+\left(x^3+x^2+x+1\right)-\left(x^2+x+1\right)\)
\(=\left(x^3+x^2+x+1\right)\left(x^4-x^3+1\right)-\left(x^2+x+1\right)\)
Vì \(\left(x^3+x^2+x+1\right)\left(x^4-x^3+1\right) ⋮ x^3+x^2+x+1 \forall x\) mà \(-\left(x^2+x+1\right)\) có bậc 2 , \(x^3+x^2+x+1\) có bậc 3
=> đa thức dư cần tìm là \(-\left(x^2+x+1\right)\)