Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rõ ràng đa thức \(x^3-1\) chia hết cho đa thức \(x^2+x+1\).
Ta tách: \(x^9+x^6+x^3+1=\left(x^9-1\right)+\left(x^6-1\right)+\left(x^3-1\right)+4=\left(x^3-1\right)\left(x^6+x^3+1\right)+\left(x^3-1\right)\left(x^3+1\right)+\left(x^3-1\right)+4\).
Từ đây suy ra đa thức đó chia cho đa thức \(x^2+x+1\) được đa thức dư là 4.
d: Ta có: f(x):g(x)
\(=\dfrac{x^3-2x^2+3x+5}{x+1}\)
\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-1}{x+1}\)
\(=x^2-3x+6+\dfrac{-1}{x+1}\)
Để f(x) chia hết cho g(x) thì \(x+1\in\left\{1;-1\right\}\)
hay \(x\in\left\{0;-2\right\}\)
a) \(g\left(x\right)=x+1=x-\left(-1\right)\)
Áp dụng định lý Bê-du có số dư của \(f\left(x\right)\)cho \(g\left(x\right)\)là :
\(f\left(-1\right)=1+\left(-1\right)^2+\left(-1\right)^4+....+\left(-1\right)^{100}\)
\(=1+1+1+...+1\)
( \(\frac{100-0}{2}+1=51\)số \(1\))
\(=51\)
Vậy ...
b: Ta có: f(x):g(x)
\(=\dfrac{x^3-2x^2+3x+a}{x+1}\)
\(=\dfrac{x^3+x^2-3x^2-3x+6x+6+a-6}{x+1}\)
\(=x^2-3x+6+\dfrac{a-6}{x+1}\)
Để f(x):g(x) là phép chia hết thì a-6=0
hay a=6
a: Thay a=3 vào f(x), ta được:
\(f\left(x\right)=x^3-2x^2+3x+3\)
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3-2x^2+3x+3}{x+1}\)
\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-3}{x+1}\)
\(=x^2-3x+6-\dfrac{3}{x+1}\)
Khi f( x) : ( x - 2 ) ( x - 3) thì còn đa thức dư vì ( x - 2 ) ( x - 3 ) có bậc cao nhất là 2
=> đa thức dư có bậc cao nhất là 1
=> G/s: đa thức dư là: r(x) = a x + b
Ta có: f ( x ) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + ax + b
Vì f ( x ) chia ( x - 2 ) dư 2016
=> f ( 2 ) = 2016 => a.2 + b = 2016 (1)
Vì f(x ) chia ( x - 3 ) dư 2017
=> f ( 3) = 2017 => a.3 + b = 2017 (2)
Từ (1) ; (2) => a = 1; b = 2014
=> Đa thức f(x) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + x + 2014
và đa thức dư là: x + 2014
Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)
\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)
Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)
Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)
\(a.\) Từ \(x-2y=1\) \(\Rightarrow\) \(x=1+2y\) \(\left(\text{*}\right)\)
Thay \(x=1+2y\) vào \(A\), khi đó, biểu thức \(A\) trở thành
\(A=\left(1+2y\right)^2+y^2+4=1+4y+4y^2+y^2+4=5y^2+4y+5\)
\(A=5\left(y^2+\frac{4}{5}y+1\right)=5\left(y^2+2.\frac{2}{5}.y+\frac{4}{25}+\frac{21}{25}\right)=5\left(y+\frac{2}{5}\right)^2+\frac{21}{5}\ge\frac{21}{5}\) với mọi \(y\)
Dấu \(''=''\) xảy ra \(\Leftrightarrow\) \(\left(y+\frac{2}{5}\right)^2=0\) \(\Leftrightarrow\) \(y+\frac{2}{5}=0\) \(\Leftrightarrow\) \(y=-\frac{2}{5}\)
Thay \(y=-\frac{2}{5}\) vào \(\left(\text{*}\right)\), ta được \(x=\frac{1}{5}\)
Vậy, \(A\) đạt giá trị nhỏ nhất là \(A_{min}=\frac{21}{5}\) khi và chỉ khi \(x=\frac{1}{5}\) và \(y=-\frac{2}{5}\)
\(b.\) Gọi \(Q\left(x\right)\) là thương của phép chia và dư là \(r=ax+b\) (vì dư trong phép chia cho \(x^2-1\) có bậc cao nhất là bậc nhất), với mọi \(x\) ta có:
\(x^{2008}-x^3+5=\left(x^2-1\right).Q\left(x\right)+ax+b\) \(\left(\text{**}\right)\)
Với \(x=1\) thì phương trình \(\left(\text{**}\right)\) trở thành \(5=a+b\) \(\left(1\right)\)
Với \(x=-1\) thì phương trình \(\left(\text{**}\right)\) trở thành \(7=-a+b\) \(\left(2\right)\)
Giải hệ phương trình \(\left(1\right)\) và \(\left(2\right)\), ta được \(a=-1\) và \(b=6\)
Vậy, dư trong phép chia đa thức \(x^{2008}-x^3+5\) cho đa thức \(x^2-1\) là \(-x+6\)
\(f\left(x\right)=x^7\)
\(=x^7+x^6+x^5+x^4-x^6-x^5-x^4-x^3+x^3+x^2+x+1-x^2-x-1\)
\(=x^4\left(x^3+x^2+x+1\right)-x^3\left(x^3+x^2+x+1\right)+\left(x^3+x^2+x+1\right)-\left(x^2+x+1\right)\)
\(=\left(x^3+x^2+x+1\right)\left(x^4-x^3+1\right)-\left(x^2+x+1\right)\)
Vì \(\left(x^3+x^2+x+1\right)\left(x^4-x^3+1\right) ⋮ x^3+x^2+x+1 \forall x\) mà \(-\left(x^2+x+1\right)\) có bậc 2 , \(x^3+x^2+x+1\) có bậc 3
=> đa thức dư cần tìm là \(-\left(x^2+x+1\right)\)