K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
1 tháng 9 2021
b: Ta có: f(x):g(x)
\(=\dfrac{x^3-2x^2+3x+a}{x+1}\)
\(=\dfrac{x^3+x^2-3x^2-3x+6x+6+a-6}{x+1}\)
\(=x^2-3x+6+\dfrac{a-6}{x+1}\)
Để f(x):g(x) là phép chia hết thì a-6=0
hay a=6
30 tháng 8 2021
a: Thay a=3 vào f(x), ta được:
\(f\left(x\right)=x^3-2x^2+3x+3\)
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3-2x^2+3x+3}{x+1}\)
\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-3}{x+1}\)
\(=x^2-3x+6-\dfrac{3}{x+1}\)
a) \(g\left(x\right)=x+1=x-\left(-1\right)\)
Áp dụng định lý Bê-du có số dư của \(f\left(x\right)\)cho \(g\left(x\right)\)là :
\(f\left(-1\right)=1+\left(-1\right)^2+\left(-1\right)^4+....+\left(-1\right)^{100}\)
\(=1+1+1+...+1\)
( \(\frac{100-0}{2}+1=51\)số \(1\))
\(=51\)
Vậy ...
còn câu b,c giúp mk nốt nha