K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2019

4x^3-3x^2 +1 x^2+2x-1 4x 4x^3+8x^2-4x - -11x^2+4x+1 -11 -11x^2-22x+11 - 26x-10

OLM chỉ có phần chụp ảnh cho CTV

Lưu ý bạn cố phải viết thẳng hàng vì OLM ko viết đc

7 tháng 7 2018

a)f(x)+g(x)=\(x^5-4x^4-2x^2-7-2x^5+6x^4-2x^2+6.\)

=\(-x^5+2x^4-4x^2-1\)

f(x)-g(x)=\(x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)

=\(3x^5-10x^4-13\)

b)f(x)+g(x)=\(5x^4+7x^3-6x^2+3x-7-4x^4+2x^3-5x^2+4x+5\)

=\(x^4+9x^3-11x^2+7x-2\)

f(x)-g(x)=\(5x^4+7x^3-6x^2+3x-7+4x^4-2x^3+5x^2-4x-5\)

=\(9x^4+5x^3-x^2-x-12\)

7 tháng 7 2018

a ) 

\(f\left(x\right)+g\left(x\right)=x^5-4x^4-2x^2-7+-2x^5+6x^4-2x^2+6\)

\(\Rightarrow f\left(x\right)+g\left(x\right)=\left(x^5-2x^5\right)+\left(6x^4-4x^4\right)-\left(2x^2+2x^2\right)+\left(6-7\right)\)

\(\Rightarrow f\left(x\right)+g\left(x\right)=-x^5+2x^4-4x^2-1\)

\(f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7-\left(-2x^5+6x^4-2x^2+6\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=\left(x^5+2x^5\right)-\left(4x^4+6x^4\right)+\left(2x^2-2x^2\right)-\left(6+7\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=3x^5-10x^4-13\)

\(f\left(x\right)=x^5-4x^4-2x^2-7\)

\(g\left(x\right)=-2x^5+6x^4-2x^2+6\)

\(f\left(x\right)+g\left(x\right)=-x^5+2x^4-4x^2-1\)

\(f\left(x\right)-g\left(x\right)=3x^5-10x^4-13\)

15 tháng 12 2022

a: \(C=\left(x+y\right)^2-2xy=6^2-2\cdot\left(-4\right)=36+8=44\)

\(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=288\)

b: \(A=x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1>0\)

\(B=x^2-2x+1+9y^2-6y+1+1=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\)

c: \(A=x^2-4x+1=x^2-4x+4-3=\left(x-2\right)^2-3>=-3\)

Dấu = xảy ra khi x=2

\(B=4x^2+4x+1+10=\left(2x+1\right)^2+10>=10\)

Dấu = xảy ra khi x=-1/2

\(C=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21< =21\)

Dấu = xảy ra khi x=-4

\(D=-\left(x^2-5x\right)=-\left(x^2-5x+\dfrac{25}{4}-\dfrac{25}{4}\right)\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}< =\dfrac{25}{4}\)

Dấu = xảy ra khi x=5/2