Cho a, b, c, d, e là các số đôi một nguyên tố cùng nhau. Chứng minh rằng \(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{e}+\frac{e}{a}\right)\notin Z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Vì }\left[a,b\right],\left[b,c\right],\left[c,a\right]\text{ là BCNN}\)
\(\Rightarrow\left[a,b\right]=a.b;\left[b,c\right]=b.c;\left[c,a\right]=c.a\)
\(\Rightarrow\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{\left[c+a\right]}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(\text{Giả sử }a< b< c\)
\(\Rightarrow a\le2;b\le3;c\le5\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{5.2}=\frac{1}{3}\)
\(\text{hay }\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{c+a}\le\frac{1}{3}\left(đpcm\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{a+b+c+d}{b+c+d+e}\)
Đặt \(k=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{a+b+c+d}{b+c+d+e}\)
\(\Rightarrow k^4=\left(\frac{a+b+c+d}{b+c+d+e}\right)^4=\frac{abcd}{bcde}=\frac{a}{e}\)
\(\Rightarrow\left(\frac{a+b+c+d}{b+c+d+e}\right)^4=\frac{a}{e}\)(đpcm)
P = \(\frac{a^3}{\left(a-b\right)\left(a-c\right)}\)\(+\)\(\frac{b^3}{\left(b-a\right)\left(b-c\right)}\)\(+\)\(\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)
= \(\frac{a^3\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)\(+\)\(\frac{b^3\left(c-a\right)}{\left(b-a\right)\left(b-c\right)\left(c-a\right)}\)\(+\)\(\frac{c^3\left(a-b\right)}{\left(c-a\right)\left(c-b\right)\left(a-b\right)}\)
= \(\frac{a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
Tử số = a3(b - c) + b3(c - a) + c3(a - b)
= a3(b - c) - b3[(b - c) + (a - b)] + c3(a - b)
= a3(b - c) - b3(b - c) - b3(a - b) + c3(a - b)
= (b - c)(a3 - b3) - (a - b)(b3 - c3)
= (b - c)(a - b)(a2 + ab + b2) - (a - b)(b - c)(b2 + bc + c2)
= (a - b)(b - c)(a2 + ab + b2 - b2 - bc - c2)
= (a - b)(b - c)(a2 + ab - bc - c2)
= (a - b)(b - c)(a - c)(a + b + c)
Vậy P = \(\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a+b+c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)= a + b + c
Vì a, b , c là các số nguyên đôi một khác nhau nên a + b + c là số nguyên
hay P có giá trị là 1 số nguyên