K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình tự vẽ 

a, Xét \(\Delta ABH\)và \(\Delta DBH\)

Có : HA=HD

        BH là cạnh chung 

        \(\widehat{AHB}=\widehat{AHB}=90^0\)

=> \(\Delta ABH=\Delta DBH\left(c.g.c\right)\)

đnag nghĩ tiếp ... 

Nhầm  : \(\widehat{AHB}=\widehat{DHB}=90^0\)

b, Theo định lí 3 cạnh của tam giác có số đo là 1800

Như ta đã bt \(\widehat{DHB}=90^0\)

\(\Rightarrow\widehat{DHB}+\widehat{HDC}=180^0\)

\(\Rightarrow\widehat{HDC}=180^0-\widehat{DHB}\)

\(\Rightarrow\widehat{HDC}=180^0-90^0=90^0\)

Mà  \(\widehat{DHB}+\widehat{HDC}=\widehat{BDC}\)

\(90^0+90^0=\widehat{BDC}\)

\(180^0=\widehat{BDC}\)

Vậy \(\widehat{BDC}=180^0\)

30 tháng 11 2019

A B C D H E I

Bài làm

a) Xét tam giác ABH và tam giác DBH có:

\(\widehat{AHB}=\widehat{DHB}=90^0\)

BH chung

HA = HD ( gt )

=> Tam giác ABH = tam giác DBH ( c.g.c )

c) Vì tam giác ABH = tam giác DBH ( theo câu a )

=> \(\widehat{ABH}=\widehat{DBH}\) ( hai góc tương ứng )

Xét tam giác ABH vuông tại H có:

\(\widehat{ABH}+\widehat{BAH}=90^0\)

Xét tam giác ABC có:

\(\widehat{ABH}+\widehat{HCA}=90^0\)

=> \(\widehat{BAH}=\widehat{HCA}\)

Xét tam giác AHC có:

\(\widehat{HAC}+\widehat{HCA}=90^0\)

=> \(\widehat{BAH}=\widehat{HCA}\)

=> \(\widehat{ABH}=\widehat{HAC}\)

=> \(\widehat{HAC}=\widehat{HBD}\)\(\widehat{ABH}=\widehat{HBD}\)

d) Xét tam giác HBD và tam giác HEA có:

BH = HE

\(\widehat{BHD}=\widehat{AHE}=90^0\)

HD = HA

=> Tam giác HBD = tam giác HEA ( c.g.c )

=> \(\widehat{BDH}=\widehat{HAE}\) ( hai góc tương ứng )

Xét tam giác BDH có: \(\widehat{DBH}+\widehat{BDH}=90^0\)

Xét tam giác ABC có: \(\widehat{ABH}+\widehat{ACH}=90^0\)

\(\widehat{ABH}=\widehat{DBH}\)

=> \(\widehat{BDH}=\widehat{ACH}\)

=> \(\widehat{HAE}=\widehat{ACH}\)

Gọi giao điểm của AE với CD là I

Xét tam giác ADC có:

H là trung điểm của AD ( AH = HD )

CH vuông góc AD

=> CH là đường trung trực

=> CD = CA

=> Tam giác CAD cân tại C

=> CH cũng là tia phân giác

=> \(\widehat{ICE}=\widehat{EAC}\)

=> \(\widehat{HAE}=\widehat{ICE}\)

Xét tam goác IEC và tam giác AHE có:

\(\widehat{HEA}=\widehat{IEC}\) ( hai góc đối )

\(\widehat{HAE}=\widehat{ICE}\) ( cmt )

=> Tam giác IEC và tam giác AHE có diện tích bằng nhau.

=> \(\widehat{AHE}=\widehat{EIC}=90^0\)

Vậy AE vuông góc cới CD ( đpcm )

30 tháng 11 2019
https://i.imgur.com/ZlsxN6a.jpg
20 tháng 11 2019

a, xét tam giác ABH và tam giác DBH có : HB chung

góc AHB = góc DHB = 90 do ...

AH = HD (gt)

=> tam giác AHB = tam giác DHB (c-g-c)

b, tam giác AHB = tam giác DHB (Câu a )

=> góc DBH = gosc HBA (Đn)    (1)

tam giác  AHB vuông tại H do ...

=> góc CBA = 90 - góc HAB 

góc CAH = 90 - góc HAB 

=> góc CAH = góc HBA  và (1)

=> góc CAH = góc HBD

2 tháng 3 2020

Tham khảo: Câu hỏi của Lee Linh 

18 tháng 3 2019

a, Xét \(\Delta ABH\)và \(\Delta ABD\)có :

      \(AH=AD\left(gt\right)\)

     \(\widehat{BAH}=\widehat{BAD}=90^o\)( vì \(\Delta ABC\)vuông tại A )

      \(BA\)chung

Vậy \(\Delta ABH=\Delta ABD\left(c.g.c\right)\)

\(\Rightarrow BH=BD\)( hai cạnh tương ứng )

\(\Rightarrow\Delta DBH\)cân tại B

b,Ta có:

   AC = 2AB ( gt )

   2AD = 2CD = AC ( vì D là trung điểm của AC )

Suy ra AB = AD = CD = 2 cm.

Lại có :

    2AD = CD hay 2 x 2 = AC

                      nên AC = 4 cm

Xét \(\Delta ABC\)có : 

   \(BC^2=AB^2+AC^2\)

hay \(BC^2=2^2+4^2\)

       \(BC^2=4+16\)

        \(BC^2=20\Rightarrow BC=\sqrt{20}\)( cm )

Vậy \(BC=\sqrt{20}cm\)

      Mình làm đến đây thôi 

27 tháng 3 2017

A B C H D 8 10 1 2 1 2 1 2 1 2

a, Tính AC:

Lưu ý: Muốn dùng định lí Pitago thì phải chỉ ra một góc trong tam giác đó bằng 90o.

Ta có: \(\widehat{A}=90^o\) (ΔABC vuông tại A)

Áp dụng định lí Pitago vào ΔABC:

Ta có: AB2 + AC2 = BC2

=> AC2 = BC2 - AB2

=> AC2 = 102 - 82

=> AC2 = 36

=> AC2 = \(\sqrt{36}\left(cm\right)\)

=> AC = 6 (cm)

b)

- \(\Delta ABH=\Delta DBH\):

Xét ΔABH và ΔDBH có:

+ BH là cạnh chung.

+ \(\widehat{H_1}=\widehat{H_2}=90^o\) (do kẻ AH \(\perp\) BC)

+ DH = HA (gt)

=> ΔABH = ΔDBH (c-g-c)

- \(\Delta ABD\) cân:

Ta có: ΔABH = ΔDBH (vừa cm)

=> AB = BD (2 cạnh tương ứng)

=> ΔABD cân tại B.

c, ΔABC = ΔDBC:

Ta có: ΔABH = ΔDBH (câu b)

=> \(\widehat{B_1}=\widehat{B_2}\) (2 góc tương ứng)

=> AB = BD (2 cạnh tương ứng)

Xét ΔABC và ΔDBC có:

+ AB = BD (cmt)

+ \(\widehat{B_1}=\widehat{B_2}\) (cmt)

+ BC là cạnh chung.

=> ΔABC = ΔDBC (c-g-c)

28 tháng 3 2017

help me câu d :(

21 tháng 12 2019

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(AHB\)\(AHC\) có:

\(AB=AC\left(gt\right)\)

\(HB=HC\) (vì H là trung điểm của \(BC\))

Cạnh AH chung

=> \(\Delta AHB=\Delta AHC\left(c-c-c\right).\)

b) Xét 2 \(\Delta\) \(ABH\)\(DCH\) có:

\(AH=DH\left(gt\right)\)

\(\widehat{AHB}=\widehat{DHC}\) (vì 2 góc đối đỉnh)

\(BH=CH\) (vì H là trung điểm của \(BC\))

=> \(\Delta ABH=\Delta DCH\left(c-g-c\right)\)

=> \(\widehat{ABH}=\widehat{DCH}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AB\) // \(CD.\)

Chúc bạn học tốt!