Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCHA vuông tại H và ΔCHD vuông tại H có
CH chung
HA=HD
=>ΔCHA=ΔCHD
b: Xét tứ giác ABDE có
H la trung điểm chung của AD và BE
=>ABDE là hình bình hành
=>DE//AB
=>DE vuôg góc AC
Xét ΔCAD có
CH,DE là đường cao
CH cắt DE tại E
=>E là trực tâm
Hình tự vẽ
a, Xét \(\Delta ABH\)và \(\Delta DBH\)
Có : HA=HD
BH là cạnh chung
\(\widehat{AHB}=\widehat{AHB}=90^0\)
=> \(\Delta ABH=\Delta DBH\left(c.g.c\right)\)
đnag nghĩ tiếp ...
Nhầm : \(\widehat{AHB}=\widehat{DHB}=90^0\)
b, Theo định lí 3 cạnh của tam giác có số đo là 1800
Như ta đã bt \(\widehat{DHB}=90^0\)
\(\Rightarrow\widehat{DHB}+\widehat{HDC}=180^0\)
\(\Rightarrow\widehat{HDC}=180^0-\widehat{DHB}\)
\(\Rightarrow\widehat{HDC}=180^0-90^0=90^0\)
Mà \(\widehat{DHB}+\widehat{HDC}=\widehat{BDC}\)
\(90^0+90^0=\widehat{BDC}\)
\(180^0=\widehat{BDC}\)
Vậy \(\widehat{BDC}=180^0\)
a) Vì A là góc vuông
=> A1 = A2 = A / 2= 90* / 2= 45*
Vì D1 = A2 = 45* ( ở vị trí so le trong)
=> AB // DK
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)
b.Xét tam giác vuông ABH và tam giác vuông ADH, có:
HD = HB ( gt )
AH: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )
=> AB = AD ( 2 cạnh tương ứng )