K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2019

=1/2 x 2/3 x 1/4 x 1/5 = 1/60

(1 - 1/2) x (1 - 1/3) x (1 - 3/4) x (1 - 4/5)

= 1/2 x 2/3 x 1/4 x 1/5

= (1/2 x 2/3) x (1/4 x 1/5)

= 1/3 x 1/20

= 1/60

18 tháng 1 2018

Có 

\(6x+1⋮2x-1\)

\(3\left(2x-1\right)⋮2x-1\)

\(\Rightarrow\left(\left(6x+1\right)-3\left(2x-1\right)\right)⋮2x-1\)

\(\Rightarrow\left(6x+1-6x+3\right)⋮2x-1\)

\(\Rightarrow4⋮2x-1\)

\(\Rightarrow\left(2x-1\right)\inƯ_{\left(4\right)}\)

mà \(2x-1\)lẻ

\(\Rightarrow2x-1\in\pm1\)

Ta có bảng giá trị

2x-11-1
x10

Thử lại : Ta thấy đều thỏa mãn

19 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}-\dfrac{4}{3}x+\dfrac{1}{2}=\dfrac{1}{2}\\-\dfrac{4}{3}x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{4}\end{matrix}\right.\\ c,\Leftrightarrow\left(\dfrac{1}{2}\right)^x\left(1+\dfrac{1}{4}\right)=\dfrac{5}{4}\\ \Leftrightarrow\left(\dfrac{1}{2}\right)^x=1\Leftrightarrow x=0\)

19 tháng 10 2021

b: Ta có: \(3^x+3^{x+2}=20\)

\(\Leftrightarrow3^x\cdot10=20\)

\(\Leftrightarrow3^x=2\left(loại\right)\)

1 tháng 11 2020

a) \(\sqrt{x^4}=2\)( ĐK x ∈ R )

⇔ \(\sqrt{\left(x^2\right)^2}=2\)

⇔ \(\left|x^2\right|=2\)

⇔ \(\orbr{\begin{cases}x^2=2\\x^2=-2\left(loai\right)\end{cases}}\)

⇔ x2 - 2 = 0

⇔ ( x - √2 )( x + √2 ) = 0

⇔ x - √2 = 0 hoặc x + √2 = 0

⇔ x = ±√2 

b) \(3\sqrt{x+1}-8=0\)( ĐK x ≥ -1 )

⇔ \(3\sqrt{x+1}=8\)

⇔ \(\sqrt{x+1}=\frac{8}{3}\)

⇔ \(x+1=\frac{64}{9}\)

⇔ \(x=\frac{55}{9}\)( tm )

c) \(2\sqrt{x-3}+\sqrt{25x-75}=14\)( ĐK x ≥ 3 ) ( Vầy hợp lí hơn á )

⇔ \(2\sqrt{x-3}+\sqrt{5^2\left(x-3\right)}=14\)

⇔ \(2\sqrt{x-3}+5\sqrt{x-3}=14\)

⇔ \(7\sqrt{x-3}=14\)

⇔ \(\sqrt{x-3}=2\)

⇔ \(x-3=4\)

⇔ \(x=7\)( tm )

d) \(\sqrt{\left(3x-1\right)^2}=5\)( ĐK x ∈ R )

⇔ \(\left|3x-1\right|=5\)

⇔ \(\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)

e) \(\sqrt{x^2+4x+4}-6=0\)( ĐK x ∈ R )

⇔ \(\sqrt{\left(x+2\right)^2}=6\)

⇔ \(\left|x+2\right|=6\)

⇔ \(\orbr{\begin{cases}x+2=6\\x+2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-8\end{cases}}\)

1 tháng 11 2020

\(a)\)\(\sqrt{x^4}=2\)\(\Leftrightarrow\)\(x^2=2\)\(\Rightarrow\)\(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

Vậy \(x=\sqrt{2}\)\(hoặc\)\(x=-\sqrt{2}\)

\(b)\)\(ĐK:x\ge0\)

\(3\sqrt{x+1}-8=0\)\(\Leftrightarrow\)\(3\sqrt{x}=8\)\(\Leftrightarrow\)\(\sqrt{x}=\frac{8}{3}\)\(\Leftrightarrow\)\(x=(\frac{8}{3})^2\)\(\Leftrightarrow\)\(x=\frac{64}{9}\)\((TM)\)

Vậy \(x=\frac{64}{9}\)

\(d)\)\(\sqrt{(3x-1)^2}=5\)\(\Leftrightarrow\)\(|3x-1|=5\)\((1)\)

  • Nếu \(x\ge\frac{1}{3}\)thì \(\left(1\right)\Leftrightarrow3x-1=5\)\(\Leftrightarrow\)\(3x=6\)\(\Leftrightarrow\)\(x=2\)\(\left(TM\right)\)
  • Nếu \(x< \frac{1}{3}\)thì \((1)\Leftrightarrow-\left(3x-1\right)=5\)\(\Leftrightarrow\)\(3x-1=-5\)\(\Leftrightarrow\)\(3x=-5+1\)\(\Leftrightarrow\)\(3x=-4\)\(\Leftrightarrow\)\(x=\frac{-4}{3}\left(TM\right)\)

Vậy \(x\in\hept{2;\frac{-4}{3}}\)

  • \(e)\)\(\sqrt{x^2+4x+4}-6=0\)\(\Leftrightarrow\)\(\sqrt{(x+2)^2}=6\)\(\Leftrightarrow\)\(|x+2|=6\)\(\left(2\right)\)

                -Nếu \(x\ge-2\)thì \(\left(2\right)\Leftrightarrow x+2=6\Leftrightarrow x=4(TM)\)

                -Nếu \(x< -2\)thì \(\left(2\right)\Leftrightarrow-\left(x+2\right)=6\Leftrightarrow x+2=-6\Leftrightarrow x=-8\left(TM\right)\)

Vậy \(x=4;x=-8\)

3 tháng 10 2017

1) Ta có: x/6 = y/3 = z/3 và 2x - 3y + 3z = 21

Aps dụng tính chất của dãy tỉ số bằng nhau:

x/6 = y/3 = z/3 = 2x/12 = 3y/9 = 3z/9 = (2x-3y+3z)/ (12 - 9 + 9) = 21/12 = 7/4

=> x/6 = 7/4 => x= 21/2

y/3 = 7/4 -> y= 21/4

z/3 = 7/4 -> z= 21/4

3 tháng 10 2017

1) đề nó sao ý bạn , sao lại tìm z nữa lại 2/3 ?

2) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{-4}=\frac{4x}{4.2}=\frac{3y}{3.\left(-4\right)}=\frac{2z}{2.\left(-4\right)}=\frac{4x+3y+2z}{8+\left(-12\right)+\left(-8\right)}=\frac{1}{-12}=\frac{-1}{12}\)

\(\frac{x}{2}=\frac{-1}{12}\Rightarrow x=\frac{-1}{6}\)

\(\frac{y}{-3}=\frac{-1}{12}\Rightarrow y=\frac{1}{4}\)

\(\frac{z}{-4}=\frac{-1}{12}\Rightarrow z=\frac{1}{3}\)

Vậy x=-1/6 ; y=1/4 và z = 1/3

3) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-3}{5}\Rightarrow\frac{x+1+y+2+z-3}{3+4+5}=\frac{18+1+2-3}{12}=\frac{18}{12}=\frac{3}{2}\)

\(\frac{x+1}{3}=\frac{3}{2}\Rightarrow x=\frac{7}{2}\)

\(\frac{y+2}{4}=\frac{3}{2}\Rightarrow y=4\)

\(\frac{z-3}{5}=\frac{3}{2}\Rightarrow z=\frac{21}{2}\)

Vậy x=7/2 ; y=4 và z=21/2

4) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x-1+y-2+z-3}{3+4+5}=\frac{30-\left(1+2+3\right)}{12}=\frac{24}{12}=2\)

\(\frac{x-1}{3}=2\Rightarrow x=7\)

\(\frac{y-2}{4}=2\Rightarrow y=10\)

\(\frac{z-3}{5}=2\Rightarrow z=13\)

Vậy x=7 ; y=10 và z=13

16 tháng 9 2016

\(x-\frac{2}{3}=x+\frac{1}{4}\)

\(x-x=\frac{1}{4}+\frac{2}{3}\)

\(0=\frac{11}{12}\)

mà 0 # 11/12

=> Không tìm được x thoả mãn đề bài