Tìm GTNN
A= x^2 + y ^2 -xy - 3y + 2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\sqrt{x-3-2\sqrt{x-3}+3}\)
\(=\sqrt{x-3-2\sqrt{x-3}+1+2}=\sqrt{\left(\sqrt{x-3}-1\right)^2+2}>=\sqrt{2}\)
Dấu = xảy ra khi x-3=1
=>x=4
\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)
\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)
\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)
\(=5\left(a+b\right)=5.2016=10080\)
bn đăng hoài và mk cũng rất chú ý tới bài này nhưng bài này k có GTNN, MONG BN XEM LẠI ĐỀ
\(B=x^2+xy+y^2-3x-3y+2016\)
\(=x^2+xy-3x+y^2-3y+2016\)
\(=x^2+x\left(y-3\right)+y^2-3y+2016\)
\(=x^2+2.x.\frac{y-3}{2}+\left(\frac{y-3}{2}\right)^2+y^2-3y-\left(\frac{y-3}{2}\right)^2+2016\)
\(=\left(x+\frac{y-3}{2}\right)^2+y^2-3y-\frac{y^2-6y+9}{4}+2016\)
\(=\left(x+\frac{y-3}{2}\right)^2+y^2-3y-\frac{y^2}{4}+\frac{3}{2}y-\frac{9}{4}+2016\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3}{4}y^2-\frac{3}{2}y+\frac{8055}{4}\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3}{4}\left(y^2-2y+1\right)+2013=\left(x+\frac{y-3}{2}\right)^2+\frac{3}{4}\left(y-1\right)^2+2013\ge2013\) (với mọi x,y)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+\frac{y-3}{2}=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy minB=2013 khi x=y=1
Bài này tìm đc GTNN nhé
2. \(P=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}\) (BĐT Cauchy-Schwarz)
\(=\dfrac{1}{2}\)
\(\Rightarrow P_{min}=\dfrac{1}{2}\) khi \(\dfrac{x}{y+z}=\dfrac{y}{z+x}=\dfrac{z}{x+y}\Rightarrow x=y=z=\dfrac{1}{3}\)
1, đặt \(x^2+x=t\)
=>\(A=t\left(t-4\right)=t^2-4t=t^2-4t+4-4\)
\(=>A=\left(t-2\right)^2-4\ge-4\) dấu"=' xảy ra\(t=2\)
\(=>x^2+x=2< =>x^2+x-2=0\)
\(< =>x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{9}{4}=0\)
\(< =>\left(x+\dfrac{1}{2}\right)^2-\left(\dfrac{3}{2}\right)^2=0< =>\left(x-1\right)\left(x+2\right)=0\)
\(=>\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\) vậy Amin=-4<=>\(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
B2
\(=>P=\dfrac{x^2}{y+z}+\dfrac{y+z}{4}+\dfrac{y^2}{x+z}+\dfrac{x+z}{4}+\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\)
\(-\left(\dfrac{y+z+x+z+x+y}{4}\right)\)
áp dụng BDT AM-GM
\(=>\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2}{4}}=x^{ }\left(1\right)\)
\(\)tương tự \(=>\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y\left(2\right)\)
\(=>\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\left(3\right)\)
(1)(2)(3) \(=>P\ge x+y+z-\dfrac{1}{2}.x+y+z=1-\dfrac{1}{2}=\dfrac{1}{2}\)
dấu"=" xảy ra<=>x=y=z=1/3
\(A=x^2+y^2-xy-3y+2016\)
\(\Leftrightarrow A=\left(x^2-xy+\frac{y^2}{4}\right)+\left(\frac{3y^2}{4}-3y+3\right)+2013\)
\(\Leftrightarrow A=\left(x-\frac{y}{2}\right)^2+3\left(\frac{y}{2}-1\right)^2+2013\ge2013\)
Dấu '' = '' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-\frac{y}{2}=0\\\frac{y}{2}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{y}{2}\\\frac{y}{2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Vậy Min A= 2013 \(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
A=(x^2-xy+1/4 . y^2)+3(1/4. y^2 -y +1)+2013
=(x-1/2y)^2 +3(1/2y-1)^2+2013
Mà (x-1/2y)^2>=0 ; (1/2y-1)^2>=0
=> A>=2013
Dấu = xảy ra <=> x=1/2y và 1/2y=1 <=> x=1 và y=2