K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

Tham khảo :

Không có mô tả.

 

25 tháng 12 2018

a, Gọi ba phần số 310 lần lượt là a;b;c

Vì ba phần tỉ lệ thuận với 2;3;5

\(\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{310}{10}=31\)( Tính chất dãy tỉ số bằng nhau)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=31\\\dfrac{b}{3}=31\\\dfrac{c}{5}=31\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=31.2=62\\b=31.3=93\\c=31.5=135\end{matrix}\right.\)

Vậy ba phần số 310 lần lượt là 62;93;135

b, Gọi ba phần số 310 lần lượt là x;y;z(x,y,z ∈ N)

Vì ba phần tỉ lệ nghịch với 2;3;5

\(\Rightarrow2a=3b=5c\)

\(\Rightarrow2a.\dfrac{1}{30}=3b.\dfrac{1}{30}=5c.\dfrac{1}{30}\)

\(\Rightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{6}=\dfrac{a+b+c}{15+10+6}=\dfrac{310}{31}=10\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{15}=10\\\dfrac{b}{10}=10\\\dfrac{c}{6}=10\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=10.15=150\\b=10.10=100\\c=10.6=60\end{matrix}\right.\)

Vậy ba phần số 310 lần lượt là 150;100;60

27 tháng 12 2016

a)Vì x;y;z tỉ lệ thuận với 2;3;5 nên x:y:z=2:3:5

x:|===|===|

y:|===|===|===|

z:|===|===|===|===|===|

62;93;155

27 tháng 12 2016

x=310:(2+3+5)*2=62

y=310:(2+3+5)*3=92

z=310-x-y=155

b)Vì x;y;z tỉ lệ ngịch với 2;3;5 nên 2x=3y=5z

=>\(\frac{x}{1:2}=\frac{y}{1:3}=\frac{z}{1:5}=\frac{x+y+z}{\left(1:2\right)+\left(1:3\right)+\left(1:5\right)}\)

=\(\frac{310}{31:30}\)=310*30/31=300

=>x=150;y=100;z=60

b/ Gọi 3 phần được chia là x;y;z

Vì x;y;z tỉ lệ nghịch với 2,3,5 nên \(\Rightarrow\)2x = 3y = 5z

\(\Rightarrow\)\(\frac{x}{\left(\frac{1}{2}\right)}\)\(\frac{y}{\left(\frac{1}{3}\right)}\)\(\frac{z}{\left(\frac{1}{5}\right)}\)

\(\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}\)

\(\frac{310}{\left(\frac{31}{30}\right)}=300\)

\(\Rightarrow\)x = 150 ; y = 100 ; z = 60

Tương tự làm câu a

2 tháng 12 2016

Giải:

Gọi ba phần đó là a, b, c

a) Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c = 310

Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{310}{10}=31\)

+) \(\frac{a}{2}=31\Rightarrow a=62\)

+) \(\frac{b}{3}=31\Rightarrow b=93\)

+) \(\frac{c}{5}=31\Rightarrow c=155\)

Vậy 3 phần đó là 62; 93; 155

b) Ta có: \(2a=3b=5c\) và a + b + c = 310

\(\Rightarrow\frac{2a}{30}=\frac{3b}{30}=\frac{5c}{30}\)

\(\Rightarrow\frac{a}{15}=\frac{b}{10}=\frac{c}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{15}=\frac{b}{10}=\frac{c}{6}=\frac{a+b+c}{15+10+6}=\frac{310}{31}=10\)

+) \(\frac{a}{15}=10\Rightarrow a=150\)

+) \(\frac{b}{10}=10\Rightarrow b=100\)

+) \(\frac{c}{6}=10\Rightarrow c=60\)

Vậy 3 phần đó là 150; 100; 60

21 tháng 11 2017

gọi 3 phần dc chia bởi số 310 lần lượt là x, y, z

a) theo đề bài ta có \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và X + Y + Z = 310

theo tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{310}{10}=31\)

\(\Rightarrow x=31.2=62\)

\(\Rightarrow y=31.3=93\)

\(\Rightarrow z=31.5=155\)

Zậy 3 phần dc chia bởi số 310 lần lượt là 62, 93, 155

b) theo đề bài ta có 2x = 3y = 5z và x + y + z = 310

\(\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)

\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

theo tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y+z}{15+10+6}=\dfrac{310}{31}=10\)

\(\Rightarrow x=15.10=150\)

\(\Rightarrow y=10.10=100\)

\(\Rightarrow z=6.10=60\)

Vậy 3 phần dc chia bởi số 310 lần lượt là 150, 100, 60

22 tháng 12 2021

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{310}{10}=31\)

Do đó: a=62; b=63; c=155

22 tháng 12 2021

Gọi 3 phần là a,b,c(a,b,c>0)

a, Áp dụng tc dtsbn:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{310}{10}=31\\ \Rightarrow\left\{{}\begin{matrix}a=62\\b=93\\c=155\end{matrix}\right.\)

b, Áp dụng tc dtsbn:

\(2a=3b=5c\Rightarrow\dfrac{2a}{30}=\dfrac{3b}{30}=\dfrac{5c}{30}\Rightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{6}=\dfrac{a+b+c}{15+10+6}=\dfrac{310}{31}=10\\ \Rightarrow\left\{{}\begin{matrix}a=150\\b=100\\c=60\end{matrix}\right.\)