Cho tam giác ABC vuông tại A,M thuộc BC.Gọi H là hình chiếu của M trên AB,K là hình chiếu của M trên AC.
a)Chứng minh rằng:AM=HK
b)Điểm M ở vị trí nào trên BC thì AM vuông góc với HK?
c)Điểm M ở vị trí nào trên BC thì HK có độ dài nhỏ nhất?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -Xét tứ giác AHMK có:
\(\widehat{AHM}=\widehat{HAK}=\widehat{AKM}=90^0\) nên AHMK là hình chữ nhật.
=>\(AM=HK\) (t/c hình chữ nhật).
b) Gỉa sử \(AM\perp HK\).
- Xét hình chữ nhật AHMK có:
\(AM\perp HK\) (gt)
=>AHMK là hình vuông.
=>AM là tia phân giác của \(\widehat{BAC}\) (t/c hình vuông).
- Vậy điểm M là giao điểm của đường phân giác \(\widehat{BAC}\) với cạnh BC thì
\(AM\perp HK\).
c) - Kẻ \(AM'\perp BC\) tại M'
=>\(AM\ge AM'\) (quan hệ giữa đường vuông góc và đường xiên).
- minAM=AM' ⇔\(AM\perp BC\) tại M.
Mà \(AM=HK\) =>- minHK=AM' ⇔\(AM\perp BC\) tại M.
- Vậy điểm M là chân đường vuông góc kẻ từ A đến BC thì K có độ dài nhỏ nhất.
a)Ta có:\(HD\perp AH;AK\perp AH\Rightarrow HD//AK\)
Mà\(AK\perp KD\Rightarrow HD\perp KD\)
Suy ra tứ giác AHDK là hình chữ nhật suy ra HK=AD(đpcm)
b)Ta có vì AHDK là hình vuông nên AH=HD=DK=AK
Suy ra tam giác AHD vuông cân tại H
\(\Rightarrow\widehat{HAD}=\widehat{HDA}=45^0\)
\(\Rightarrow\widehat{DAK}=90^0-45^0=45^0\)
\(\Rightarrow\widehat{HAD}=\widehat{DAK}\)hay AD là tia phân giác của góc A
Vậy AHDK là hình vuông khi và chỉ khi AD là tia phân giác của góc A
c)Ta có:Để HK nhỏ nhất thì AD nhỏ nhất
Suy ra AD vuông góc với BC
Vậy HK nhỏ nhất khi và chỉ khi D là hình chiếu của A trên BC