K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2019

a)ta có MA=MB

NA=NC

=)MN là đường trung bình tam giác ABC

=)MN//BC

b)ta có MN là đường trung bình tam giác ABC (cmt)

=)MN=1/2BC

lại có BC = 10cm (gt)

=)MN=BC/2=5 cm

11 tháng 11 2019

B A C M N

a) Xét tam giác ABC có : 

M là trung điểm của AB

N là trung điểm của AC

=> MN là đường trung bình của tam giác ABC ( định nghĩa )

=> MN // BC ( tính chất )

b) Vì MN là trung bình của tam giác ABC ( chứng minh trên )

\(\Rightarrow MN=\frac{BC}{2}=\frac{10}{2}=5\left(cm\right)\) ( tính chất ) 

13 tháng 11 2021

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

22 tháng 12 2016

Giải

a, Do AM là đường trung tuyến ứng với cạnh huyền của ΔABC vuông tại A, nên 
AM = BM = CM = BC/2 = 10/2 = 5 (cm) 

b, Do D là điểm đối xứng của A qua M nên AD = 2AM = 2BM = BC. 
Do tứ giác ABDC có hai đường chéo AD và BC bằng nhau, cắt nhau tại trung điểm mỗi đường nên ABDC là hình chữ nhật ( dấu hiệu nhận biết hình chữ nhật ) 

c, Hình chữ nhật ABDC là hình vuông ⇔ ∡BMA = 90º 
⇔ AM ⊥ BC 
ΔABC có AM vừa là đường cao, vừa là đường trung tuyến nên ΔABC là tam giác cân tại A, kết hợp với ∡A = 90º ⇒ ΔABC vuông cân tại A. 

Vậy với ΔABC vuông cân tại A thì tứ giác ABDC là hình vuông. 
 

25 tháng 12 2016

mơn bạn

28 tháng 8 2019

Vì M là trung điểm của AB nên:

Bài tập: Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng định lí py tago vào tam giác ABC có:

Suy ra: AC = 8cm

Xét tam giác ABC có M và N lần lượt là trung điểm của AB và BC nên MN là đường trung bình của tam giác ABC nên: MN// AC và

Bài tập: Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Suy ra: tứ giác MNCA là hình thang vuông.

Diện tích hình thang MNCA là:

Bài tập: Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án D

29 tháng 4 2021

a) Xét tam giác ABC có:

BC2 = 102 = 100 (cm)

AB2 + AC2 = 6+ 82 = 36 + 64 = 100 (cm)

=> BC2 = AB2 + AC2 (= 100)

=> Tam giác ABC vuông tại A (định lý Pytago đảo)

b) MB = MD (gt) => M là trung điểm BD 

Xét Tứ giác ABCD có:

M là trung điểm của BD (cmt)

M là trung điểm của AC (gt)

=> ABCD là hình bình hành (dhnb)

=> AB // CD (Tính chất hình bình hành)

 

30 tháng 4 2021

Thank u

a: Xét ΔABC có AB<AC<BC

nên góc C<góc B<góc A

b: Xét ΔCDB có

CA,DK là trung tuyến

CA cắt DK tại M

=>M là trọng tâm

=>CM=2/3CA=16/3(cm)

c: Gọi giao của d với AC là N

d là trung trực của AC

=>d vuông góc AC tại N và N là trung điểm của AC

=>QN//AD

Xét ΔCAD có

N là trung điểm của AC

NQ//AD

=>Q là trung điểm của CD

Xét ΔCDB có

BQ là trung tuyến

M là trọng tâm

=>B,M,Q thẳng hàng

11 tháng 8 2023

a, Ta có: AB < AC < BC

=> C < B< A

b, Xét tam giác BCD có CA và DK là đường trung tuyến

CA cắt DK tại M

=> M là trọng tâm tam giác BCD

=> MC= 2/3 AC= 2/3.8= 16/3 cm

c, Xét tam giác ABC và tam giác ADC có:

AB = AD

BAC= DAC= 90°AC chung

=> tam giác ABC = tam giác ADC (c.g.c)

=> ACB= ACD (2 góc tương ứng) và BC = DC ( 2 cạnh tương ứng) (1)

KQ là đường trung trực của AC

=> KQ vuông góc với AC tại E

Xét tam giác KCE và tam giác QCE có:

KCE= QCE

EC chung

KEC= QEC=90°

=> tam giác KCE = tam giác QCE (gcg)

=> KC = QC (2 cạnh tương ứng) (2)

Mà K là trung điểm BC (3)

Từ (1), (2) và (3) suy ra Q là trung điểm của DC

Xét tam giác BCD có M là trong tâm

=> M thuộc đường trung tuyến BQ

=> B, M, Q thẳng hàng

a: AC=8cm

Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

Suy ra: \(\widehat{ABD}=90^0\)

b: Xét ΔAMB và ΔDMC có

MA=MD

MB=MC

AB=DC

Do đó: ΔAMB=ΔDMC

Xét ΔABC và ΔBAD có

BA chung

BC=AD

AC=BD

Do đó: ΔABC=ΔBAD

c: Xét tứ giác AEDF có 

AE//DF

AE=DF

Do đó AEDF là hình bình hành

Suy ra: HAi đường chéo AD và EF cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của AD

nên M là trung điểm của FE

hay F,M,E thẳng hàng

a: \(AC=5\sqrt{3}\left(cm\right)\)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

Suy ra: BA=BE

hay B nằm trên đường trung trực của AE(1)

Ta có: ΔABD=ΔEBD

nên DA=DE
nên D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD⊥AE