Chứng minh
a)A=3+3^2+......+3^100 chia hết cho 4
b) A chia hết cho 40
giúp mk nha >_<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có số hạng của A là:(100-1):1+1=100(số)
Nên A=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+...+(2^96+2^97+2^98+2^99+2^100)
A=62+2^5*62+...+2^95*62=62*(1+2^5+...+2^95) Suy ra A chia hết cho 62.Tk mình nhé bn!
Ta có : 62 = 2 . 31
Mà A luôn chia hết cho 2 ( 1 )
A = 2 + 22 + 23 + .... + 2100
A = ( 2 + 22 + 23 + 24 + 25 ) + .... + ( 296 + 297 + 298 + 299 + 2100 )
A = 2 . ( 1 + 2 + 22 + 23 + 24 ) + ... + 296 . ( 1 + 2 + 22 + 23 + 24 )
A = 2 . 31 + ... + 296 . 31 \(⋮\)31 ( 2 )
Từ 1 và 2 => A chia hết cho 62
Vậy A chia hết cho 62
2A=2^2+2^3+2^4+....+2^101
2A-A=(2^2+2^3+2^4+....+2^101) - (2+2^2+2^3+...+2^100)
1A=2^101 - 2
A= 2^101-2
a) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2+...+4^{59}\right)⋮4\)
b) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)=4.5+4^3.5+...+4^{59}.5=5\left(4+4^3+...+4^{59}\right)⋮5\)
c) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)=4.21+4^4.21+...+4^{58}.21=21\left(4+4^4+...+4^{58}\right)⋮21\)
\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)
Mk đang hỏi tại sao lại có phần (1+2) mà bạn. Bạn biết thì chỉ mk với
a) Có A=2+22+23+24+...+2100
= 2.(1+2+4+8)+25.(1+2+4+8)+29(1+2+4+8)+...+296.(1+2+4+8)
=2.15+25.15+29.15+...+296.15
=15(2+25+29+...+296)
=> A \(⋮\) 15
b)
A=2+22+23+.....+2100
= (2 + 22 + 23 + 24) + .... + (297 + 298 + 299 + 2100)
= 1.30 + 24.30 + ..... + 296.30
= 30.(1+34+...+296)
=>A\(⋮\) 30 < = > A \(⋮\) 10
< = >A có tận cùng là 0