Cho số tự nhiên có 4 chữ số . Nếu xóa đi chữ số hàng chục và hàng đợn vị thì số đó giảm đi 5445 đơn vị . Tìm số đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a0b = ab x 7
a x 100 + b = ( a x 10 + b ) x7
a x 100 + b = a x 10 x 7 + b x 7
Cùng bớt đi b
a x 100 = a x 70 + b x 6
Cùng bớt đi a x 70
a x 30 = b x 6
Cùng chia cho 6
a x 5 = b x 1
=>a = 1 ; b = 5
Vậy số đó là 15
2 bài kia bạn tự giải nha , mk lười lắm :)))))
cau hoi nay la cau hoi co 3 chu so chu khong hai la 2chu so
Gọi số đó là abcd Theo bài ra ta có: abcd= ab +2322 ab x100 +cd= ab+2322 ab x99 +cd= 2322 ab x99 chia hết cho 9; 2322 chia hết cho 9 nên cd chia hết cho 9 Mặt khác ab nhỏ hơn hoặc bằng 23. Nếu ab>23 thì ab x99> 2322 Vậy 45<cd <100 l cd=45; .. Thử chọn ta tìm được cd=45; ab=23
Gọi số đó là abcd
Theo bài ra ta có: abcd= ab +2322
ab x100 +cd= ab+2322
ab x99 +cd= 2322
ab x99 chia hết cho 9; 2322 chia hết cho 9 nên cd chia hết cho 9
Mặt khác ab nhỏ hơn hoặc bằng 23. Nếu ab>23 thì ab x99> 2322
Vậy 45<cd <100 l
cd=45; ..
Thử chọn ta tìm được cd=45; ab=23
Gọi số cần tìm là abcd số mới là ab
Theo đề bài
abcd - ab = 1996 => 100 x ab + cd - ab =1996 => 99 x ab = 1996 - cd = 1980 + 16 - cd = 1980 - (cd - 16)
Ta có 99 x ab chia hết cho 99 => 1980 + 16 - cd = 1980 -(cd -16) phải chia hết cho 99 => cd = 16
=> ab = 1980:99 = 20
Số cần tìm là 2016
Gọi số cần tìm là abcd (a, b, c, d < 10 và a ≠ 0)
Theo bài ra ta có:
abcd - ab = 1996
abcd = 1996 + ab
Vì: ab ≥ 10 nên 1996 + ab ≥ 1996 + 10 = 2016 hay abcd ≥ 2016
Ta lại có: ab < 100 nên 1996 + ab < 1996 + 100 = 2096 hay abcd < 2096
Suy ra: 2016 ≤ abcd < 2096 hay ab = 20
Vậy: Số phải tìm là: 1996 + 20 = 2016
các bạn giúp mình giải nha.mình xin cảm ơn các bạn đã giúp mình
1) Giải
Gọi số đó là abcd. Theo đề ta có :
2) Giải :
Gọi số đó là abc. Theo đề ta có :
Số có 4 chữ số có dạng: \(\overline{abcd}\)
Khi ta xóa đi chữ số hàng chục và hàng đơn vị thì ta được số mới là:
\(\overline{ab}\)
Theo bài ra ta có: \(\overline{abcd}\) - \(\overline{ab}\) = 1438
\(\overline{ab}\) \(\times\) 100 + \(\overline{cd}\) - \(\overline{ab}\) = 1438
\(\overline{ab}\) \(\times\) 99 + \(\overline{cd}\) = 1438
\(\overline{ab}\) \(\times\) 99 + \(\overline{cd}\) = 1386 + 52
⇒ \(\overline{ab}\) \(\times\) 99 - 1386 = 52 - \(\overline{cd}\)
⇒ \(\overline{ab}\) \(\times\) 99 - 14 \(\times\) 99 = 52 - \(\overline{cd}\)
⇒ 99 \(\times\) ( \(\overline{ab}\) - 14) = 52 - \(\overline{cd}\) ⇒ 52 - \(\overline{cd}\) ⋮ 99
⇒ 52 - \(\overline{cd}\) = 0 ⇒ \(\overline{cd}\) = 52 vào biểu thức
99 \(\times\) (\(\overline{ab}\) - 14) = 52 - \(\overline{cd}\) ta có:
99 \(\times\) ( \(\overline{ab}\) - 14) = 52 - 52 = 0
⇒ \(\overline{ab}\) - 14 = 0 ⇒ \(\overline{ab}\) = 14
Thay \(\overline{ab}\) = 14 và \(\overline{cd}\) = 52 vào biểu thức: \(\overline{abcd}\) = 1452
Kết luận số cần tìm là 1452
Thử lại kết quả ta có: Khi bỏ bớt chữ số hàng đơn vị và hàng chục của số đó ta được số mới là 14
Số đó giảm là: 1452 - 14 = 1438 (ok)
Gọi số cần tìm có dạng là \(X=\overline{abcd}\)
Khi xóa đi chữ số hàng chục và hàng đơn vị của một số tự nhiên thì số đó giảm đi 3663 đơn vị nên ta có:
\(\overline{abcd}-\overline{ab}=3663\)
=>\(1000a+100b+10c+d-10a-b=3663\)
=>\(990a+99b+10c+d=3663\)
=>(a,b,c,d)=(3;6;9;9); (a,b,c,d)=(3;7;0;0)
Vậy: Hai số cần tìm là 3699 và 3700