Chứng minh : A = 5 + 5 mũ 2 + 5 mũ 3 + . . . + 5 mũ 9+ 5 mũ 10 chia hết cho 6 giúp mk với nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=5+52+53+....+59+510
=> A=(5+52)+(53+54)+...+(59+510)
=> A=5(1+5)+53(1+5)+....+59(1+5)
=> A=5.6+53.6+....+59.6
=> A=6(5+53+....+59)
=> A chia hết cho 6 (đpcm)
a;
A = 109 + 108 + 107
A = 107.(102 + 10 + 1)
A = 106.2.5.(100 + 10 + 1)
A = 106.2.5.111
A = 106.2.555 ⋮ 555 (đpcm)
b;
B = 817 - 279 - 919
B = 914 - 39.99 - 919
B = 914 - 3.38.99 - 919
B = 914 - 3.94.99 - 919
B = 914 - 3.913 - 919
B = 913.(9 - 3 - 96)
B = 913.(9 - 3 - \(\overline{..1}\))
B = 913.(6 - \(\overline{..1}\))
B = 913.\(\overline{..5}\)
B ⋮ 9; B ⋮ 5
B \(\in\) BC(9; 5) = 9.5 = 45
B ⋮ 45 (đpcm)
Tổng a có ssh là (8-1):1-1=8
Vì 8:2=4
Đo đó ta nhóm tổng a thành 4 nhóm mỗi nhóm có 2 số hạng
(5+5²)+(5³+5⁴)+...+(5⁷+5⁸)
5×(1+5)+5³×(1+5)+5⁷×(1+5)
5×6+5³×6+...+5⁷×6
6×(5+5³+...+5⁷)
Vì 6:6 nên a:6
VậyA:6
Ban "ten to sieu dai yyyyyyyyyyyyyyyyyyyyyyy...." oi! ban dung khoe ten nua. ten dai koa dk j dau ma khoe.
\(B=2+2^2+2^3+2^4+...+2^{10}\)
=>\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
=>\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
=>\(B=3\left(2+2^3+...+2^9\right)⋮3\left(đpcm\right)\)
Trả lời:
\(B=2+2^2+2^3+2^4+....2^9+2^{10}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\) (Phần này là nhóm các lũy thừa có cùng cơ số 2 vào các nhóm sao cho tổng nhóm đầu tiên chia hết cho 3 thì mấy nhóm sau với số số hạng tương tự nhóm 1 thì oke giải tiếp như sau)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(=3\left(2+2^3+...+2^9\right)\)
Vì \(3⋮3\Rightarrow3\left(2+2^3+...+2^9\right)⋮3\)
=> đpcm
Vậy B chia hết cho 3
#Huyền Anh
\(B=2+2^2+2^3+2^4+...+2^{10}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(=2\left(1+2\right)+2^2\left(1+2\right)+...+2^9\left(1+2\right)\)
\(=3\left(2+2^2+...+2^9\right)⋮3\)
\(\Rightarrow B⋮3\)
..
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
50+51+52+53+...+52010+52011
= 1+5+52+53+...+52010+52011
=(1+5)+(52+53)+...+(52010+52011)
= (1+5)+52(1+5)+...+52010(1+5)
= (1+5)(1+52+...+52010)
= 6.(1+52+...+52010) chia hết cho 6
=> đpcm
A=5+52+53+....+59+510
=> A=(5+52)+(53+54)+...+(59+510)
=> A=5(1+5)+53(1+5)+....+59(1+5)
=> A=5.6+53.6+....+59.6
=> A=6(5+53+....+59)
=> A chia hết cho 6 (đpcm)