Câu 1:Biết Chứng minh rằng
Câu 2:Tìm tỉ lệ số , biết rằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{q^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> \(\frac{a^2}{4}=4\Rightarrow a^2=4.4=16\Rightarrow a=+-4\)
=>\(\frac{b^2}{9}=4\Rightarrow b^2=4.9=36\Rightarrow b=+-6\)
=>\(\frac{2c^2}{32}=4\Rightarrow c^2=4.32:2=64\Rightarrow c=+-8\)
Câu 2 :
Ta có : \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Câu 1:
- Gọi số tiền lãi mà cả mỗi đơn vị sản xuất nhận được lần lượt là x, y, z tỉ lệ với các số 7; 8; 9.
Ta có: x/7= y/8= z/9 và x+ y+ z= 720 000 000.
=> x/7+ y/8+ z/9= 720 000 000/24= 30 000 000
<=> x/7= 30 000 000 nên x= 7×30 000 000= 210 000 000
y/8= 30 000 000 nên y= 8×30 000 000= 240 000 000
z/9= 30 000 000 nên z= 9×30 000 000= 270 000 000
Vậy, đơn vị sản xuất đầu tiên nhận được 210 000 000 triệu đồng tiền lãi; đơn vị sản xuất thứ hai nhận được 240 000 000 triệu đồng tiền lãi; đơn vị sản xuất thứ ba nhận được 270 000 000 triệu đồng tiền lãi.
CÂU 1 : 87-49=47.27-49=47(27-42)=47.112 chia hết cho 14 (vì 112 chia hết cho 14 bằng 8)
Câu 2: tổng chiều dài và chiều rộng hình chữ nhật là : 48:2 = 24( cm)
chiều rộng hình chữ nhật là: 24:(3+5) x 3 = 9 cm
chiều dài hình chữ nhật là: 24:(3+5) x 5 = 15 cm
x tỉ lệ thuận với y theo hệ số tỉ lệ k=0,5 nên x=0,5y
z tỉ lệ thuận với y theo hệ số tỉ lệ là k=8/3 nên z=8/3y
=>\(\dfrac{x}{z}=\dfrac{1}{2}:\dfrac{8}{3}=\dfrac{1}{2}\cdot\dfrac{3}{8}=\dfrac{3}{16}\)
=>x=3/16z
=>z=16/3x
=>z và x tỉ lệ thuận với hệ số tỉ lệ là k=16/3
Câu 5:
Gọi số điểm tốt của ba lớp 7A, 8A, 9A lần lượt là \(a,b,c\)(tốt) \(a,b,c\inℕ^∗\).
Vì số điểm tốt của ba chi đội lần lượt tỉ lệ với \(9,7,8\)nên \(\frac{a}{9}=\frac{b}{7}=\frac{c}{8}\).
Tổng số điểm tốt là \(120\)nên \(a+b+c=120\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{9}=\frac{b}{7}=\frac{c}{8}=\frac{a+b+c}{9+7+8}=\frac{120}{24}=5\)
\(\Leftrightarrow\hept{\begin{cases}a=5.9=45\\b=5.7=35\\b=5.8=40\end{cases}}\).
Câu 4:
Gọi độ dài ba cạnh của tam giác lần lượt là \(a,b,c\left(cm\right)\)\(a,b,c>0\).
Các cạnh của tam giác có số đo tỉ lệ với \(3,4,5\)nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\).
Chu vi của tam giác là \(13,2cm\)nên \(a+b+c=13,2\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{13,2}{12}=1,1\)
\(\Leftrightarrow\hept{\begin{cases}a=1,1.3=3,3\\b=1,1.4=4,4\\c=1,1.5=5,5\end{cases}}\)
Câu 1:
a)Áp dụng tc dãy tỉ:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
\(\Rightarrow\begin{cases}\frac{x}{3}=2\Rightarrow x=6\\\frac{y}{7}=2\Rightarrow y=14\end{cases}\)
b)Áp dụng tc dãy tỉ:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
\(\Rightarrow\begin{cases}\frac{x}{5}=2\Rightarrow x=10\\\frac{y}{2}=2\Rightarrow y=4\end{cases}\)
Câu 2:
a)\(\frac{x}{7}=\frac{18}{14}\Rightarrow14x=18\cdot7\)
\(\Rightarrow14x=126\)
\(\Rightarrow x=9\)
b và c đề có vấn đề
Câu 1:
a) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
+) \(\frac{x}{3}=2\Rightarrow x=6\)
+) \(\frac{y}{7}=2\Rightarrow y=14\)
Vậy cặp số \(\left(x,y\right)\) là \(\left(6,14\right)\)
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
+) \(\frac{x}{5}=2\Rightarrow x=10\)
+) \(\frac{y}{2}=2\Rightarrow y=4\)
Vậy cặp số \(\left(x,y\right)\) là \(\left(10,4\right)\)
Câu 3:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)
+) \(\frac{x}{2}=2\Rightarrow x=4\)
+) \(\frac{y}{4}=2\Rightarrow y=8\)
+) \(\frac{z}{6}=2\Rightarrow z=12\)
Vậy bộ số \(\left(x,y,z\right)\) là \(\left(4,8,12\right)\)
Câu 4:
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cái đề bài chuẩn CMNR.^^