giải pt bằng phương pháp đặt ẩn phụ :
căn (x^2-3x+2) = x^2-3x-4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk : với mọi x
Đặt \(\sqrt{x^2-3x+3}=a\)
pt trở thành : a+\(\sqrt{a^2+3}\)=3
<=> \(\sqrt{a^2+3}\)= 3-a
=> a^2+3 = 9-6a+a^2
<=> a^2+3-(9-6a+a^2)=0
<=> 6a-6=0
<=> 6a=6
<=> a=1
<=> \(\sqrt{x^2-3x+3}\)=1
<=> x^2-3x+3=1
<=> x^2-3x+2=0
<=> (x-1).(x-2) = 0
<=> x=1 hoặc x=2
Thử lại thì đều tm
Vậy .............
Tk mk nha
Đặt \(\sqrt{x^2+9}=a\) ( \(a\ge9\) ) => \(x^2+9=a^2\)
Đặt \(3x+5=b\) => \(2x+3=\dfrac{2}{3}a-\dfrac{1}{3}\)
Ta có; \(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)
<=> \(2ab=3a^2+\left(\dfrac{2}{3}b-\dfrac{1}{3}\right)\)
<=> \(6ab=9a^2+2b-1\)
<=> \(\left(9a^2-1\right)-\left(6ab-2b\right)=0\)
<=> \(\left(3a-1\right)\left(3a+1\right)-2b\left(3a-1\right)=0\)
<=> \(\left(3a-1\right)\left(3a+1-2b\right)=0\)
<=> \(\left[{}\begin{matrix}3a=1\left(1\right)\\3a-2b=-1\left(2\right)\end{matrix}\right.\)
(1) => \(3\sqrt{x^2+9}=1\) => Vô nghiệm ( vì \(\sqrt{x^2+9}\ge9\) )
(2) => \(3\sqrt{x^2+9}-2\left(3x+5\right)=-1\)
=> \(x=0\) (TM)
P/s: Mk nghĩ vì bn khá giỏi nên mk sẽ lm hơi tắt!
\(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)
\(\Leftrightarrow2\left(3x+5\right)\sqrt{x^2+9}-30=3x^2+2x\)
\(\Leftrightarrow\dfrac{4\left(3x+5\right)^2\left(x^2+9\right)-900}{2\left(3x+5\right)\sqrt{x^2+9}+30}=x\left(3x+2\right)\)
\(\Leftrightarrow\dfrac{36x^4+120x^3+424x^2+1080x}{2\left(3x+5\right)\sqrt{x^2+9}+30}-x\left(3x+2\right)=0\)
\(\Leftrightarrow\dfrac{4x\left(9x^3+30x^2+106x+270\right)}{2\left(3x+5\right)\sqrt{x^2+9}+30}-x\left(3x+2\right)=0\)
\(\Leftrightarrow x\left(\dfrac{4\left(9x^3+30x^2+106x+270\right)}{2\left(3x+5\right)\sqrt{x^2+9}+30}-\left(3x+2\right)\right)=0\)
Dễ thấy: \(\dfrac{4\left(9x^3+30x^2+106x+270\right)}{2\left(3x+5\right)\sqrt{x^2+9}+30}-\left(3x+2\right)>0\)
\(\Rightarrow x=0\)
Lời giải:
ĐKXĐ: $x\geq 2$ hoặc $x\leq 1$
Đặt $\sqrt{x^2-3x+2}=a(a\geq 0)\Rightarrow x^2-3x-4=a^2-6$
Phương trình đã cho trở thành:
\(a=a^2-6\)
\(\Leftrightarrow a^2-a-6=0\Leftrightarrow a(a-3)+2(a-3)=0\)
\(\Leftrightarrow (a-3)(a+2)=0\Rightarrow a=3\) (do $a\geq 0$)
\(\Leftrightarrow \sqrt{x^2-3x+2}=3\)
\(\Rightarrow x^2-3x+2=9\)
\(\Leftrightarrow x^2-3x-7=0\Rightarrow x=\frac{3\pm \sqrt{37}}{2}\) (đều thỏa mãn)
Vậy.........