Câu 1: Chứng tỏ rằng các số sau đây là hợp số:
a) 297 ; 39743 ; 987624 b) 11...1 có 2001 chữ số 1 hoặc 2007 chữ số 1
Câu 2: Tìm số tự nhiên m để 7m là số nguyên tố .
NHANH TICK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) abcabc=abc.1000+abc=1001.abc=7.143.abc Suy ra abcabc+7=7.(143.abc+1) chia hết cho 7, suy ra dpcm
b) abcabc=1000.abc+abc=1001.abc=13.77.abc, suy ra abcabc+39=13.(77.abc+3) chia hết cho 13, suy ra dpcm
c) abcabc=1000.abc+abc=1001.abc=11.91.abc; suy ra abcabc+33=11.(91.abc+3) chia hết cho 11; suy ra dpcm.
Bài 2:
29 = 29
⇒ 29.n = 29.n
⇒ 29.n \(\in\) p ⇔ n = 1
Vậy n = 1
1)
+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)
+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)
+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2
Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3
=>p+8 là hợp số (trái với giả thiết )
Vậy p phải có dạng là 3k+2
Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3
=>p+4 là hợp số (đpcm)
câu 1
a) 297 là bội của 3 là hợp số
39743 là bội của 11 là hợp số
987621 là bội của 2 là hợp số
b) 11....1 có 2001 chữ số 1 hoặc 2007 chữ số 1 có tổng các chữ số chia hết cho 3
nên 11...1 là bội của 3 là hợp số
câu 2 : m=1