K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`B = x^2- 2xy + y^2 + 2x - 10y + 17

`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`

`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.

 

26 tháng 7 2023

Mik cảm ơn

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

Lời giải:

a. Đặt $y=kx$ với $k$ là hệ số tỉ lệ. $k$ cố định.

Có:

$\frac{1}{9}=y_2=kx_2=3k\Rightarrow k=\frac{1}{9}:3=\frac{1}{27}$

Vậy $y=\frac{1}{27}x$

$y_1=\frac{1}{27}x_1$

Thay $y_1=\frac{-3}{5}$ thì: $\frac{-3}{5}=\frac{1}{27}x_1$

$\Rightarrow x_1=\frac{-3}{5}: \frac{1}{27}=-16,2$

b. Đặt $y=kx$

$y_1=kx_1$

$\Rightarrow -2=k.5\Rightarrow k=\frac{-2}{5}$
Vậy $y=\frac{-2}{5}x$.

$\Rightarrow y_2=\frac{-2}{5}x_2$

Thay vào điều kiện $y_2-x_2=-7$ thì:

$\frac{-2}{5}x_2-x_2=-7$

$\Leftrightarrow \farc{-7}{5}x_2=-7\Leftrightarrow x_2=5$

$y_2=\frac{-2}{5}x_2=\frac{-2}{5}.5=-2$

15 tháng 11 2021

\(a,y_2=kx_2\Rightarrow-2=5k\Rightarrow k=-\dfrac{2}{5}\) (k là hệ số tỉ lệ)

\(\Rightarrow y_1=-\dfrac{2}{5}x_1=-3\Rightarrow x_1=\dfrac{15}{2}\)

\(b,y_1=kx_1\Rightarrow k=\dfrac{3}{2}\\ \Rightarrow y_2=\dfrac{3}{2}x_2\\ \Rightarrow x_2+\dfrac{3}{2}x_2=10\\ \Rightarrow\dfrac{5}{2}x_2=10\Rightarrow x_2=4\\ \Rightarrow y_2=\dfrac{3}{2}\cdot4=6\)

15 tháng 11 2021

cảm ơn bn nhó hihi iu bn nhìu thanks vui

20 tháng 7 2023

Bài 6:

M= 2.2 - 2.3+3.2.3

M= 4 - 6 + 18

M= 20

Bài 7: 

P= 1.2 - 5.-1.-2 + 8.-2.2

P = 2 -10 -32

P= -44

Bài 8:

A (thiếu dữ kiện bn ơi)

B= -1.2 . 3.2 + -1.3 +3.3 +-1.3

B= -2 . 6 + -3 + 9 +-3

B= -2 . 6 - 3 + 9 - 3

B= -12 - 3 + 9 - 3

B= -9

16 tháng 12 2022

\(Q=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{x^2+y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2x^2+2y^2}{2\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{2x^2+2y^2+4xy}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}\)

`#3107.101107`

`D = x^3 - y^3 - 3xy` biết `x - y - 1 = 0`

Ta có:

`x - y - 1 = 0`

`=> x - y = 1`

`D = x^3 - y^3 - 3xy`

`= (x - y)(x^2 + xy + y^2) - 3xy`

`= 1 * (x^2 + xy + y^2) - 3xy`

`= x^2+ xy + y^2 - 3xy`

`= x^2 - 2xy + y^2`

`= x^2 - 2*x*y + y^2`

`= (x - y)^2`

`= 1^2 = 1`

Vậy, với `x - y = 1` thì `D = 1`

________

`E = x^3 + y^3` với `x + y = 5; x^2 + y^2 = 17`

`x + y = 5`

`=> (x + y)^2 = 25`

`=> x^2 + 2xy + y^2 = 25`

`=> 2xy = 25 - (x^2 + y^2)`

`=> 2xy = 25 - 17`

`=> 2xy = 8`

`=> xy = 4`

Ta có:

`E = x^3 + y^3`

`= (x + y)(x^2 - xy + y^2)`

`= 5 * [ (x^2 + y^2) - xy]`

`= 5 * (17 - 4)`

`= 5 * 13`

`= 65`

Vậy, với `x + y = 5; x^2 + y^2 = 17` thì `E = 65`

________

`F = x^3 - y^3` với `x - y = 4; x^2 + y^2 = 26`

Ta có:

`x - y = 4`

`=> (x - y)^2 = 16`

`=> x^2 - 2xy + y^2 = 16`

`=> (x^2 + y^2) - 2xy = 16`

`=> 2xy = (x^2 + y^2) - 16`

`=> 2xy = 26 - 16`

`=> 2xy = 10`

`=> xy = 5`

Ta có:

`F = x^3 - y^3`

`= (x - y)(x^2 + xy + y^2)`

`= 4 * [ (x^2 + y^2) + xy]`

`= 4 * (26 + 5)`

`= 4*31`

`= 124`

Vậy, với `x - y = 4; x^2 + y^2 = 26` thì `F = 124.`