K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 10 2019

Đề bài thiếu dữ kiện:

Tam giác MNP vuông ở đâu?

Điểm H là điểm gì?

6 tháng 10 2021

Sửa đề: Đường cao MH

Áp dụng HTL:

\(MH^2=NH.HP\)

\(\Rightarrow MH=\sqrt{NH.HP}=\sqrt{4.12}=4\sqrt{3}\left(cm\right)\)

\(\left\{{}\begin{matrix}MN^2=NH.NP=4.\left(12+4\right)=64\\MP^2=HP.NP=12\left(12+4\right)=192\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}MN=8\left(cm\right)\\MP=8\sqrt{3}\left(cm\right)\end{matrix}\right.\)

17 tháng 12 2023

ΔMNP vuông tại M

=>\(NP^2=MN^2+MP^2\)

=>\(NP^2=3^2+4^2=25\)

=>\(NP=\sqrt{25}=5\left(cm\right)\)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(MH\cdot NP=MN\cdot MP\)

=>\(MH\cdot5=3\cdot4=12\)

=>MH=12/5=2,4(cm)

Xét ΔPMN vuông tại M có MH là đường cao

nên \(PH\cdot PN=PM^2\)

=>\(PH\cdot5=4^2=16\)

=>PH=16/5=3,2(cm)

10 tháng 1 2022

a, xét tam giá HNM và tam giác MNP có chung :

góc MNP

cạnh MN 

cạnh NI của tam giác HNM nằm trên cạnh NP của tam giác MNP 

=> tam giác HNM đồng dạng MNP (c-g-c)

b,

áp dụng đ/l pytago vào tam giác vuông MNP :

=>NP=15cm 

MH.NP =NM.MP

MH.15=9.12

=>MH=7,2cm

áp dụng đl pytago vào tam giác vuông MNH ( NHM = 90\(^o\)):

=>NH=5,4cm

HP=NP-NH

HP=15-5,4=9,6cm

c, 

vì MI là phân giác của góc M 

=> MI là trung tuyến của tam giác MNP nên:

NI=IP 

mà NI+IP=15cm

=> NI=IP =7,5cm

9 tháng 9 2021

3\(\sqrt{5}\)

9 tháng 9 2021

con gi nua ko bi thieu de

14 tháng 2 2019

Tự vẽ Hình 

a;Xét tam giác MHN và tam giác MHP có

góc MHN = góc MHP(=90o)

MH:chung

MNMP(=5cm)

=> Tam giác MHN = tam giácMHP (ch-cgv)

=> HN=HP;góc NMH = góc PMH (t.ứng)

b;Vì NH+HP=NP

mà NH=PH 

=> NH=PH=1/2 NP=1/2.8=4(cm)

\(\Delta MHN\)vuông tại H

Áp dụng định lí py-ta-go ta có 

\(HM^2+HN^2=MN^2\)

\(\Rightarrow HM^2=MN^2-HN^2=5^2-4^2=9\)

\(\Rightarrow HM=\sqrt{9}=3\left(cm\right)\)

c, Tam giác HDE cân ????

19 tháng 6 2017

Xin lỗi mình không biết làm!

14 tháng 2 2019

*Bn tự vẽ hình nha

a, Áp dụng đ/lý Py-ta-go vào tam giác vuông MHP ta cs

MH^2+ HP^2= MP^2

MH^2.           =MP^2-HP^2

MH^2            =20^2- 16^2

MH^2.           =400-256

MH^2            =144

=> MH=12cm

Áp dụng đ/lý Pytago vào tam giác vuông MHN ta cs

MN^2= NH^2+ MH^2

MN^2= 9^2 + 12^2

MN^2= 81+144

MN^2= 255

=>MN= 15cm

a: Xét ΔMNP vuông tại M có 

\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)

\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)

\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)

\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

15 tháng 3 2022

 minh ko bt