\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}v\text{à}2x^2+2y^2-3z^2=-100\)
Tìm x,y,z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng dãy tỉ số bằng nhau :
\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x = 2 . 10 = 20
y = 2 . 15 = 30
z = 2 . 21 = 42
Vậy : .....
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
MSC của y là : 20
Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(2x+3y-z=186\)
\(\Rightarrow2.15+3.20-28=30+60-28=62\)
\(\frac{186}{62}=3\)
x = 3 . 15 = 45
y = 3 . 20 = 60
z = 3 . 28 = 84
Vậy: .....
Lời giải:
Đặt $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k(k>0)$
$\Rightarrow x=3k; y=4k; z=5k$.
Khi đó:
$2x^2+2y^2-3z^2=-100$
$\Rightarrow 2(3k)^2+2(4k)^2-3(5k)^2=-100$
$\Rightarrow -25k^2=-100$
$\Rightarrow k^2=4\Rightarrow k=2$ (do $k>0$)
Ta có:
$x=3k=3.2=6; y=4k=4.2=8; z=5k=5.2=10$
Ta có \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(=\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
\(=\frac{x-1-\left(2y-4\right)+3z-9}{2-6+12}\)
\(=\frac{x-1-2y+4+3z-9}{8}\)
\(=\frac{\left(x-2y+3z\right)-6}{8}=\frac{14-6}{8}=\frac{8}{8}=1\)
Có \(\frac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow y=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=4\Rightarrow z=7\)
\(x:y:z=3:4:5\Leftrightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=2.\left(3k\right)^2+2.\left(4k\right)^2-3.\left(5k\right)^2=18k^2+32k^2-75k^2=100\)
\(\Leftrightarrow-25k^2=-100\Leftrightarrow k^2=4\Leftrightarrow k=2\Rightarrow x=6;y=8;z=10\)
bài này dễ mà, bạn áp dụng tính chất của dãy tỉ số bằng nhau là ra thôi nha!
nhấn lộn lớp 1 là lớp 7 mà quan trọng j cái lớp quan trọng có giải dc ko mới là chuyện để come
\(2x^2+2y^2-3z^2=-100\left(1\right)\)
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\)\(\left(2\right)\)
Thay (2) vào (1) ta được:
\(2.\left(3k\right)^2+2.\left(4k\right)^2-3.\left(5k\right)^2=-100\)
\(\Leftrightarrow18k^2+32k^2-75k^2=-100\)
\(\Leftrightarrow-25k^2=-100\)
\(\Leftrightarrow k^2=4\)
\(\Leftrightarrow k=\pm2\)
TH1: Thay k=2 vào (2) ta được
\(\left\{{}\begin{matrix}x=3.2=6\\y=4.2=8\\z=5.2=10\end{matrix}\right.\)
TH2: Thay k=-2 vào (2) ta được:
\(\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=4.\left(-2\right)=-8\\z=5.2\left(-2\right)=-10\end{matrix}\right.\)
Vậy \(\left(x,y,z\right)=\left\{\left(6,8,10\right);\left(-6,-8,-10\right)\right\}\)
Ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}.\)
=> \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)
=> \(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\) và \(2x^2+2y^2-3z^2=-100.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow\left[{}\begin{matrix}y=8\\y=-8\end{matrix}\right.\\\frac{z^2}{25}=4\Rightarrow z^2=100\Rightarrow\left[{}\begin{matrix}z=10\\z=-10\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(6;8;10\right),\left(-6;-8;-10\right).\)
Chúc bạn học tốt!