K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 10 2019

a/ ĐKXĐ: \(x\ge1\)

\(x^2-2x+1+2\left(x-1\right)\sqrt{x-1}+x-1=4\)

\(\Leftrightarrow\left(x-1\right)^2+2\left(x-1\right)\sqrt{x-1}+x-1=4\)

\(\Leftrightarrow\left(x-1+\sqrt{x-1}\right)^2=4\)

\(\Leftrightarrow x-1+\sqrt{x-1}=2\) (do \(x-1+\sqrt{x-1}\ge0\) \(\forall x\ge1\))

\(\Leftrightarrow x-1+\sqrt{x-1}-2=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-1}=-2\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=2\)

b/ ĐKXĐ: \(x;y;z\ge0\)

Nhận thấy \(x=y=z=0\) là 1 nghiệm của pt đã cho

Với \(x;y;z\ne0\)

Áp dụng BĐT Cauchy: \(\sqrt{y}=\frac{4x}{4x+1}\le\frac{4x}{2\sqrt{4x}}=\sqrt{x}\Rightarrow y\le x\)

Hoàn toàn tương tự ta có \(\left\{{}\begin{matrix}z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}4x=1\\4y=1\\4z=1\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\frac{1}{4}\)

NV
16 tháng 10 2019

2/ \(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)>0\)

\(\Leftrightarrow-2m>0\Rightarrow m< 0\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=4-2m\\x_1x_2=m^2-2m+4\end{matrix}\right.\)

\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)

\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1x_2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)

\(\Leftrightarrow\frac{2}{2m^2-12m+8}-\frac{1}{m^2-2m+4}=\frac{1}{15m}\)

\(\Leftrightarrow\frac{m}{m^2-6m+4}-\frac{m}{m^2-2m+4}=\frac{1}{15}\)

Do \(m< 0\), chia cả tử và mẫu của các hạng tử vế trái cho m ta được:

\(\frac{1}{m+\frac{4}{m}-6}-\frac{1}{m+\frac{4}{m}-2}=\frac{1}{15}\)

Đặt \(m+\frac{4}{m}-6=a\Rightarrow m+\frac{4}{m}-2=a+4\) phương trình trở thành:

\(\frac{1}{a}-\frac{1}{a+4}=\frac{1}{15}\Leftrightarrow15\left(a+4\right)-15a=a\left(a+4\right)\)

\(\Leftrightarrow a^2+4a-60=0\Rightarrow\left[{}\begin{matrix}a=6\\a=-10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m+\frac{4}{m}-6=6\\m+\frac{4}{m}-6=-10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2-12m+4=0\\m^2+4m+4=0\end{matrix}\right.\)

7 tháng 9 2019

Bài 2:

a)Ta có: \({\left( {x + 2y} \right)^2} \le \left( {1 + 1} \right)\left( {{x^2} + 4{y^2}} \right) \Rightarrow \dfrac{{\left( {{x^2} + 4{y^2}} \right)}}{2} \ge \sqrt {\dfrac{{{{\left( {x + 2y} \right)}^2}}}{4}} \Leftrightarrow \dfrac{{\left( {{x^2} + 4{y^2}} \right)}}{2} \ge \dfrac{{\left| {x + 2y} \right|}}{2} \)Mặt khác ta cũng có:

\( \dfrac{{{x^2} + 2xy + 4{y^2}}}{3} = \dfrac{{3{{\left( {x + 2y} \right)}^2} + {{\left( {x - 2y} \right)}^2}}}{{12}} \ge \dfrac{{{{\left( {x + 2y} \right)}^2}}}{4}\\ \Rightarrow \sqrt {\dfrac{{{x^2} + 2xy + 4{y^2}}}{3}} \ge \dfrac{{\left| {x + 2y} \right|}}{2} \)

Từ đó suy ra: \(\sqrt {\dfrac{{{x^2} + 4{y^2}}}{2}} + \sqrt {\dfrac{{{x^2} + 2xy + 4{y^2}}}{3}} \ge \left| {x + 2y} \right| \ge x + 2y \)

Dấu bằng xảy ra khi và chỉ khi \(x=2y\ge0\)

Thay vào phương trình còn lại ta thu được:

\({x^4} - {x^3} + 3{x^2} - 2x - 1 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^3} + 3x + 1} \right) = 0 \Leftrightarrow x = 1 \Rightarrow y = \dfrac{1}{2} \)

Vậy nghiệm của hệ phương trình là: \(\left( {1;\dfrac{1}{2}} \right) \)

\(\boxed{Nguyễn Thành Trương}\)

7 tháng 9 2019

Bài 1: a liên hợp là ra mà nhỉ?

a) ĐK: \(x>-3\)

Mặt khác \(PT\Leftrightarrow\sqrt{\frac{1}{x+3}}-2+\sqrt{\frac{5}{x+4}}-2=0\)

\(\Leftrightarrow\frac{\frac{1}{x+3}-4}{\sqrt{\frac{1}{x+3}}+2}+\frac{\frac{5}{x+4}-4}{\sqrt{\frac{5}{x+4}}+2}=0\)

\(\Leftrightarrow\frac{-\left(x+\frac{11}{4}\right)}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{-\left(x+\frac{11}{4}\right)}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}=0\) (quy đồng cái tử lên thôi)

\(\Leftrightarrow\left(x+\frac{11}{4}\right)\left[\frac{-1}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{-1}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}\right]=0\)

Cái ngoặc to nhìn liếc qua cũng thấy nó < 0.

Do đó \(x=-\frac{11}{4}\)

P/s: Về cơ bản hướng làm là vậy, khi là sẽ có thể có những sai sót, do em bị hư máy tính cầm tay:v. Đang rất GP đây này@@

\(\text{~tth~}\)

AH
Akai Haruma
Giáo viên
10 tháng 2 2017

Lời giải:

ĐK \(x,y,z\geq \frac{1}{4}\)

\(\text{HPT}\Rightarrow 2(x+y+z)=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)

Áp dụng bất đẳng thức AM-GM ta có :

\(\sqrt{4x-1}=\sqrt{(4x-1).1}\leq \frac{4x-1+1}{2}=2x\)

Tương tự với các biểu thức còn lại.....

\(\Rightarrow \sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\leq 2(x+y+z)\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} 4x-1=1\\ 4y-1=1\\ 4z-1=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{1}{2}\\ y=\frac{1}{2}\\ z=\frac{1}{2}\end{matrix}\right.\)

Vậy HPT có nghiệm \((x,y,z)=\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)\)

21 tháng 8 2018

x = y = z = 0,5