Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐK \(x,y,z\geq \frac{1}{4}\)
\(\text{HPT}\Rightarrow 2(x+y+z)=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(\sqrt{4x-1}=\sqrt{(4x-1).1}\leq \frac{4x-1+1}{2}=2x\)
Tương tự với các biểu thức còn lại.....
\(\Rightarrow \sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\leq 2(x+y+z)\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} 4x-1=1\\ 4y-1=1\\ 4z-1=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{1}{2}\\ y=\frac{1}{2}\\ z=\frac{1}{2}\end{matrix}\right.\)
Vậy HPT có nghiệm \((x,y,z)=\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)\)
Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại
Với pt sau:
Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm
Với \(x;y;z\ne0\)
Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3
Do đó:
\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)
ĐK:\(x,y,z\ge \frac{1}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(2x+2y+2z-\sqrt{4x-1}-\sqrt{4y-1}-\sqrt{4z-1}=0\)
\(\Leftrightarrow\left(4x-1-2\sqrt{4x-1}+1\right)+\left(4y-1-2\sqrt{4y-1}+1\right)+\left(4z-1-2\sqrt{4z-1}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)
Dễ thấy: \(VT\ge0\forall x,y,z\)
\("="\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4x-1}=1\\\sqrt{4y-1}=1\\\sqrt{4z-1}=1\end{matrix}\right.\)\(\Leftrightarrow x=y=z=\dfrac{1}{2}\)
Cách 2: sử dụng BĐT
Ta có: \(1.\sqrt{4z-1}\le\frac{1}{2}\left(1+4z-1\right)=2z\)
\(\Rightarrow x+y\le2z\) (1)
Tương tự ta có: \(y+z\le2x\) (2) ; \(z+x\le2y\) (3)
Cộng vế với vế (1) và (2) \(\Rightarrow2y\le x+z\) (4)
Từ (3); (4) \(\Rightarrow2y=x+z\)
Hoàn toàn tương tự ta có: \(2z=x+y\) ; \(2x=y+z\)
\(\Rightarrow x=y=z\)
Thay vào pt ban đầu: \(2x=\sqrt{4x-1}\Leftrightarrow x=y=z=\frac{1}{2}\)
ĐKXĐ: ...
Lần lượt trừ vế với vế của từng pt ta được hệ mới:
\(\left\{{}\begin{matrix}x-z=\sqrt{4z-1}-\sqrt{4x-1}\\y-z=\sqrt{4z-1}-\sqrt{4y-1}\\x-y=\sqrt{4y-1}-\sqrt{4x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-z=\frac{4\left(z-x\right)}{\sqrt{4z-1}+\sqrt{4x-1}}\\y-z=\frac{4\left(z-y\right)}{\sqrt{4y-1}+\sqrt{4z-1}}\\x-y=\frac{4\left(y-x\right)}{\sqrt{4x-1}+\sqrt{4y-1}}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-z\right)\left(1+\frac{4}{\sqrt{4z-1}+\sqrt{4x-1}}\right)=0\\\left(y-z\right)\left(1+\frac{4}{\sqrt{4y-1}+\sqrt{4z-1}}\right)=0\\\left(x-y\right)\left(1+\frac{4}{\sqrt{4x-1}+\sqrt{4y-1}}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow x=y=z\)
Thay vào pt đầu:
\(2x=\sqrt{4x-1}\Leftrightarrow4x^2=4x-1\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow x=y=z=\frac{1}{2}\)
a)\(\left\{{}\begin{matrix}\dfrac{10}{\sqrt{12x-3}}+\dfrac{5}{\sqrt{4y+1}}=1\\\dfrac{7}{\sqrt{12x-3}}+\dfrac{8}{\sqrt{4y+1}}=1\end{matrix}\right.\)
ĐK: \(x>\dfrac{1}{4};y>-\dfrac{1}{4}\), đặt \(a=\dfrac{1}{\sqrt{12x-3}};b=\dfrac{1}{\sqrt{4y+1}}\)với a,b>0
khi đó, ta có hệ phương mới \(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}80a+40b=8\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}45a=3\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35.\dfrac{1}{15}+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\b=\dfrac{1}{15}\end{matrix}\right.\)
thay \(\dfrac{1}{\sqrt{12x-3}}=a\) hay \(\dfrac{1}{\sqrt{12x-3}}=\dfrac{1}{15}\Rightarrow\sqrt{12x-3}=15\Leftrightarrow12x-3=225\Leftrightarrow12x=228\Leftrightarrow x=19\left(TMĐK\right)\) thay \(\dfrac{1}{\sqrt{4y+1}}=b\) hay
\(\dfrac{1}{\sqrt{4y+1}}=\dfrac{1}{15}\Rightarrow\sqrt{4y+1}=15\Leftrightarrow4y+1=225\Leftrightarrow4y=224\Leftrightarrow y=56\left(TMĐK\right)\)
Vậy (x;y)=(9;56) là nghiệm duy nhất của hệ phương trình đã cho.
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=4\\x\left(1+4y\right)+y=2\end{matrix}\right.\)
ĐK: x,y#0, khi đó \(\dfrac{1}{x}+\dfrac{1}{y}=4\Rightarrow x+y=4xy\)
Do đó \(x\left(1+4y\right)+y=2\Leftrightarrow x+4xy+y=2\Leftrightarrow x+x+y+y=2\Leftrightarrow2\left(x+y\right)=2\Leftrightarrow x+y=1\)
Mà \(4xy=x+y\Leftrightarrow4xy=1\Leftrightarrow xy=\dfrac{1}{4}\)
Vậy \(x+y=1;xy=\dfrac{1}{4}\)
Do đó x,y là nghiệm của phương trình:
\(t^2-t+\dfrac{1}{4}=0\)
\(\Delta=b^2-4ac=1-4.1.\dfrac{1}{4}=0\)
Phương trình có nghiêm kép \(x_1=x_2=-\dfrac{b}{2a}=-\dfrac{-1}{2}=\dfrac{1}{2}\)
\(\Rightarrow x=y=\dfrac{1}{2}\left(nhận\right)\)
Vậy (x;y)=\(\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) là nghiệm duy nhất của hệ phương trình đã cho.
à bài này làm r` ở bên đây nè :D có cả 2 cách
Câu hỏi của Phúc Long Nguyễn - Toán lớp 9 - Học toán với OnlineMath