Cho tứ giác ABCD. Gọi M,N,P thứ tự là trung điểm của AB,BC,CA. Chứng minh rằng: SMNP=\(\frac{1}{4}S_{ABCD}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ADC có Q là trung điểm của AD và P là trung điểm của DC => QP là đường trung bình của tam giác ADC.=> QP//AC và QP=\(\dfrac{1}{2}\)AC (1)
Xét tam giác ABC có M là trung điểm của AB và N là trung điểm của BC => MN là đường trung bình của tam giác ABC => MN//AC và MN=\(\dfrac{1}{2}\)AC (2)
Từ (1) và (2) => QP=MN và QP//MN => MNPQ là hình bình hành
b,Nếu ABCD là hình thang cân <=> AC=BD (2 đường chéo) (3)
Xét tam giác BCD có N là trung điểm của BC và P là trung điểm của DC => NP là đương trung bình của tam giác BCD => NP//BD và NP=\(\dfrac{1}{2}\)BD (4)
=> Từ (1) (3) và (4) ta có QP=NP
=> ABCD là hình bình hành có QP=NP ( cạnh kề )
=> ABCD là hình thoi
BẠN TỰ VẼ HÌNH NHA
Bài 1:
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của DC
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
b: Xét tứ giác MCNA có
MC//NA
MC=NA
Do đó: MCNA là hình bình hành
Suy ra: MA//NC và MA=NC(2)
hay MP//NQ(1)
Xét tứ giác BMNA có
BM//NA
BM=NA
Do đó: BMNA là hình bình hành
Suy ra: BN và MA cắt nhau tại trung điểm của mỗi đường
hay P là trung điểm của MA
=>PM=MA/2(3)
Xét tứ giác MCDN có
MC//DN
MC=DN
Do đó: MCDN là hình bình hành
Suy ra: MD và CN cắt nhau tại trung điểm của mỗi đường
=>Q là trung điểm của CN
=>NQ=CN/2(4)
Từ (2), (3) và (4) suy ra MP//NQ(5)
Từ (1) và (5) suy ra MPNQ là hình bình hành(6)
Xét hình bình hành BMNA có BM=BA
nên BMNA là hình thoi
=>BN⊥MA
hay \(\widehat{MPN}=90^0\)(7)
Từ (6) và (7) suy ra PMQN là hình chữ nhật
c: Để hình chữ nhật PMQN là hình vuông thì MP=PN
=>BN=MA
=>BMNA là hình vuông
=>\(\widehat{ABC}=90^0\)