Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C N M G E F I
a, xét tứ giác BICG có :
M là trung điểm cuả BC do AM là trung tuyến (gt)
M là trung điểm của GI do I đx G qua M (gt)
=> BICG là hình bình hành (dh)
+ G là trọng tâm của tam giác ABC (gt)
=> GM = AG/2 và GN = BG/2 (đl)
E; F lần lượt là trung điểm của GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)
=> FG = GM và GN = GE
=> G là trung điểm của FM và EN
=> MNFE là hình bình hành (dh)
b, MNFE là hình bình hành (câu a)
để MNFE là hình chữ nhật
<=> NE = FM
có : NE = 2/3BN và FM = 2/3AM
<=> AM = BN mà AM và BN là trung tuyến của tam giác ABC (Gt)
<=> tam giác ABC cân tại C (đl)
c, khi BICG là hình thoi
=> BG = CG
BG và AG là trung tuyến => CG là trung tuyến
=> tam giác ABC cân tại A
a) Nối AC
tam giác ACD có HA=HD; GC=GD nên HG là đường trung bình của tam giác ACD
=> HG//AC; HG=1/2AC. (1)
Tam giác ABC có EA=EB; FB=FC nên EF là đường trung bình của tam giác ABC
=> EF//AC; EF=1/2AC. (2)
Từ (1) và (2) suy ra HG//EF; HG=EF
Tứ giác EFGH có HG//EF; HG=EF
Vậy EFGH là hình bình hành.
b)* Để hình bình hành EFGH là hình thoi, ta cần có thêm hai cạnh kề bằng nhau.
Giả sử EH=FH mà EH=1/20BD(EA=EB, HA=HD nên EH là đường trung bình của tam giác ABD).
HG=1/2AC(cmt)
nên BD=AC
Vậy để hình bình hành EFGH trở thành hình thoi thì hai đường chéo AC và BD của tứ giác ABCD phải bằng nhau.
* Để hình bình hành EFGH là hình chữ nhật, ta cần có thêm một góc vuông.
Giả sử góc H=90 độ, vì HG//AC(cmt)
HG vuông góc với HE
từ hai điều này suy ra AC cũng vuông góc với HE
lại có HE//BD(cmt)
từ hai điều này lại suy ra AC vuông góc với BD
vậy để hình bình hành EFGH là hình thoi, hai đuognừ chéo AC và BD của tứ giác ABCD phải vuông góc với nhau.
* Để hình bình hành EFGH trở thành hình vuông ta cần có thêm hai cạnh kề bằng nhau và một góc vuông.
Giả sử HE=HG => AC=BD(cmt)
H=90 độ => AC vuông góc với BD(cmt)
vậy để hình bình hành EFGH là hình vuông, hai đuognừ chéo AC và BD của tứ giác ABCD phải bằng nhau và vuông góc với nhau.
Bài 2:
a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có
AD=CB
góc ADN=góc CBM
DO đó: ΔADN=ΔCBM
=>DN=BM và AN=CM
b: Xet tứ giác AMCN có
AN//CM
AN=CM
Do đó: AMCN là hình bình hành
c: Gọi O là giao của AC và BD
=>O là trung điểm của AC
Xet ΔAKC có AN/AK=AO/AC
nên NO//KC
=>KC//BD
Xét ΔBAK có
BN vừa là đường cao, vừa là trung tuyến
nên ΔBAK cân tại B
=>BA=BK=DC
Xét tứ giác BDKC có
KC//BD
DC=BK
Do đo; BDKC là hình thang cân
Bài 2:
a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có
AD=CB
góc ADN=góc CBM
DO đó: ΔADN=ΔCBM
=>DN=BM và AN=CM
b: Xet tứ giác AMCN có
AN//CM
AN=CM
Do đó: AMCN là hình bình hành
c: Gọi O là giao của AC và BD
=>O là trung điểm của AC
Xet ΔAKC có AN/AK=AO/AC
nên NO//KC
=>KC//BD
Xét ΔBAK có
BN vừa là đường cao, vừa là trung tuyến
nên ΔBAK cân tại B
=>BA=BK=DC
Xét tứ giác BDKC có
KC//BD
DC=BK
Do đo; BDKC là hình thang cân
a) Tam giác ABC có MA=MC; NA=NB nên MN là đường trung bình của tam giác ABC
=> MN//BC; MN=1/2BC (1).
Tam giác BGC có PG=BP; QG=QC nên PQ là đường trung bình của tam giác BGC
=> PQ//BC; PQ=1/2BC (2).
từ (1) và (2) suy ra MN//PQ; MN=1/2PQ.
Tứ giác MNPQ có MN//PQ; MN=1/2PQ.
vậy MNPQ là hình bình hành.
b) câu này là dạng tìm điều kiện là dạng khó nhất trong ba dạng là dễ nhất là chứng minh tứ giác là hình gì, mình chỉ cần thuộc lí thuyết dò sẽ ra; tiếp theo là tứ giác này là hình gì, mình phải tự tìm; cuối cùng là dạng tìm điều kiện để trở thành hình khác thì mình phải giả sử một đặc điểm để trở thành hình đó rồi tìm mối tương quan.
c1:Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm Một góc vuông.
Giả sử GÓc N=90 độ
Nối AG. Vì NA=NB;PQ=PB nên NP là đường trung bình của tam giác ABG=> NP//AG
mà NP vuông góc với MN. từ hai điều này suy ra AG cũng vuông góc với MN.
lại có MN//BC(cmt) từ hai điều này lại suy ra AG vuông góc với BC.
tam giác ABC có AG vừa là đường trung tuyến vừa là đường cao nên tam giác ABC cân tại A
Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.
C2: Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm hai đuognừ chéo bằng nhau
Giả sử MP=NQ (1)
ta có: MNPQ là hình bình hành nên GN=GQ; GP=GM
G là trọng tâm của tam giác ABC nên BP=1/3BM; CQ=1/3CN. từ hai điều này suy ra: BP=1/2MP; CQ=1/2QN (2)
Từ (1) và (2) suy ra MP+BP=NQ+CQ hay BM=CN
Tam giác ABC có hai đuognừ trung tuyến bằng nhau nên tam giác ABC cân tại A( điều này đã được chứng minh ở lớp 7, bạn không cần chứng minh lại)
Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.
Bởi vì cách 2 nó có cái điều mà mình tự cm ở lớp 7 nên nhiều khi không hay
c)Nếu BM và CN vuông góc với nhau hay PM và QN cũng vuông góc với nhau.
Hình bình hành MNPQ có hai đuognừ chéo PM và QN vuông góc với nhau, nên MNPQ là hình thoi,.
Vậy nếu Nếu BM và CN vuông góc với nhau thì MNPQ là hình thoi
b: Xét tứ giác MCNA có
MC//NA
MC=NA
Do đó: MCNA là hình bình hành
Suy ra: MA//NC và MA=NC(2)
hay MP//NQ(1)
Xét tứ giác BMNA có
BM//NA
BM=NA
Do đó: BMNA là hình bình hành
Suy ra: BN và MA cắt nhau tại trung điểm của mỗi đường
hay P là trung điểm của MA
=>PM=MA/2(3)
Xét tứ giác MCDN có
MC//DN
MC=DN
Do đó: MCDN là hình bình hành
Suy ra: MD và CN cắt nhau tại trung điểm của mỗi đường
=>Q là trung điểm của CN
=>NQ=CN/2(4)
Từ (2), (3) và (4) suy ra MP//NQ(5)
Từ (1) và (5) suy ra MPNQ là hình bình hành(6)
Xét hình bình hành BMNA có BM=BA
nên BMNA là hình thoi
=>BN⊥MA
hay \(\widehat{MPN}=90^0\)(7)
Từ (6) và (7) suy ra PMQN là hình chữ nhật
c: Để hình chữ nhật PMQN là hình vuông thì MP=PN
=>BN=MA
=>BMNA là hình vuông
=>\(\widehat{ABC}=90^0\)
Hình đâu bạn