c/m bất đẳng thứ cô-si
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi như a, b, c là số dương
Áp dụng BĐT Cô-si ta có:
\(\dfrac{a}{bc}+\dfrac{c}{ba}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{c}{ba}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\left(1\right)\)
Dấu "=" xảy ra ...
\(\dfrac{a}{bc}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\left(2\right)\)
Dấu "=" xảy ra ...
\(\dfrac{c}{ba}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{c}{ba}+\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\left(3\right)\)
Dấu "=" xảy ra ...
Từ (1), (2), (3) ta có:
\(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\\ \Rightarrow2\left(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ \Rightarrow\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Dấu "=" xảy ra ...
Vậy ...
Lời giải:
Bổ sung điều kiện $a,b$ là các số dương. Áp dụng BĐT Cô-si ta có:
$a+b\geq 2\sqrt{ab}$
$\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}$
$\Rightarrow (a+b)(\frac{1}{a}+\frac{1}{b})\geq 2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4$
Ta có đpcm
Dấu "=" xảy ra khi $a=b$
Chào bạn, bạn hãy theo dõi câu trả lời của mình nhé!
Bất đẳng thức Cauchy là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm được phát biểu như sau :
* Đối với 2 số :
\(\frac{a+b}{2}\ge\sqrt{ab}\)
* Đối với n số :
\(\frac{x_1+x_2+x_3+...+x_n}{n}\ge\sqrt[n]{x_1.x_2.x_3.....x_n}\)
Chúc bạn học tốt!
Chịu
tui lớp 4. Ông lớp 9. Giải bằng cái nịt. Search google rồi còn không làm được. Trời ơi!!! 🙄
Ta có : \(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2+b^2+2ab\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
Có : \(a,b\ge0\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) ( đpcm )
Vậy ...
Vào câu hỏi tương tự nha MARKTUAN