thực hiện phép tính:
x+1/x-1-x-1/x+1-4/1-x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+1}{x^2-4}:\dfrac{x+1}{x+2}=\dfrac{x+1}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+1}{x+2}=\dfrac{x+1}{\left(x-2\right)\left(x+2\right)}.\dfrac{x+2}{x+1}=x-2\)
theo cách tính tổng (bn có thể xem lại ở toán 7 hay 6 j đấy) thì bt trên bằng 1/x - 1/(x+5)
từ đó tính tiếp nha bn
\(=\dfrac{3x^2+5x+14+x^2-1-4x^2+4x-4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{9x+9}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{9}{x^2-x+1}\)
Bài 2:
1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)
\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)
\(=x^3+2^3-2\left(x^2-1\right)\)
\(=x^3+8-2x^2+2=x^3-2x^2+10\)
\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)
\(=\left(-2y\right)^2+4\left(y+2\right)\)
\(=4y^2+4y+8\)
2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)
3: \(B=4y^2+4y+8\)
\(=4y^2+4y+1+7\)
\(=\left(2y+1\right)^2+7>=7>0\forall y\)
=>B luôn dương với mọi y
Bài 1:
5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)
\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)
\(=2x^3-x+x^2-y\)
6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)
\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)
\(=6x^2+23x-55-6x^2-84x-294\)
=-61x-349
1) \(A=\left[x^4-\left(x-1\right)^2\right]:\left(x^2+x-1\right)-x^2+x=\left[\left(x^2-x+1\right)\left(x^2+x-1\right)\right]:\left(x^2+x-1\right)-x^2+x=x^2-x+1-x^2+x=1\)
2) \(B=\dfrac{\left(x+1\right)\left(x+2\right)+4\left(x-2\right)+2-7x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4}{x^2-4}=1\)
= (x+1/2)(x-1/2 x + 1/4)
=(x+1/2)(1/2x + 1/4)
=x(1/2x + 1/4) + 1/2(1/2x+1/4)
=1/2 x^2 + 1/4 x + 1/4 x + 1/8
= x^2/2 + 1/2 x + 1/8
\(\left(x-\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}x+\dfrac{1}{4}\right)\)
\(=\left(x+\dfrac{1}{2}\right)\left(\dfrac{1}{2}x+\dfrac{1}{4}\right)\)
\(=\dfrac{1}{2}x^2+\dfrac{1}{4}x+\dfrac{1}{4}x+\dfrac{1}{8}\)
\(=\dfrac{1}{2}x^2+\dfrac{1}{2}x+\dfrac{1}{8}\)
Câu hỏi của Best Friend Forever - Toán lớp 7 - Học toán với OnlineMath
\(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{4}{1-x^2}=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}+\frac{4}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(x+1\right)^2-\left(x-1\right)^2-4}{\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1-x+1\right)\left(x+1+x-1\right)-4}{\left(x-1\right)\left(x+1\right)}\)
\(\frac{2.2x-4}{\left(x-1\right)\left(x+1\right)}=\frac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)