K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

Cho hình vuông $ABCD$ có cạnh bằng $1$. Trên $BC$ lấy $M, CD$ lấy $N$ sao cho chu vi tam giác $MCN$ bằng 2. Tính góc $MAN$ - Hình học - Diễn đàn Toán học

Tham khảo nhé. Đây là toán lớp 7. Năm ngoái mình thi

BÀI 1: a) CHO HÌNH BÌNH HÀNH ABCD CÓ góc >90 . SO SÁNH AC VÀ BDb) TỨ GIÁC ABCD CÓ \hat{A} , \hat{B} ,\hat{C} TÙ. CHỨNG MINH AC<BDBÀI 2: CHO HÌNH CHỮ NHẬT ABCD. KẺ BH VUÔNG GÓC AC (H THUỘC AC). TRÊN TIA ĐỐI CỦA TIA BH LẤY ĐIỂM E SAO CHO BE = AC. CHỨNG MINH RẰNG GÓC ADE = 45 ĐỘBÀI 3 : CHỨNG MINH RẰNG TỨ GIÁC CÓ GIAO ĐIỂM HAI ĐƯỜNG CHÉO TRÙNG VỚI GIAO ĐIỂM CÁC ĐOẠN THẲNG NỐI TRUNG...
Đọc tiếp

BÀI 1: a) CHO HÌNH BÌNH HÀNH ABCD CÓ góc >90 . SO SÁNH AC VÀ BD

b) TỨ GIÁC ABCD CÓ \hat{A} , \hat{B} ,\hat{C} TÙ. CHỨNG MINH AC<BD



BÀI 2: CHO HÌNH CHỮ NHẬT ABCD. KẺ BH VUÔNG GÓC AC (H THUỘC AC). TRÊN TIA ĐỐI CỦA TIA BH LẤY ĐIỂM E SAO CHO BE = AC. CHỨNG MINH RẰNG GÓC ADE = 45 ĐỘ


BÀI 3 : CHỨNG MINH RẰNG TỨ GIÁC CÓ GIAO ĐIỂM HAI ĐƯỜNG CHÉO TRÙNG VỚI GIAO ĐIỂM CÁC ĐOẠN THẲNG NỐI TRUNG ĐIỂM CÁC CẠNH ĐỐI DIỆN THÌ TỨ GIÁC ĐÓ LÀ HÌNH BÌNH HÀNH



BÀI 4: CHO TAM GIÁC ABC VUÔNG TẠI A ( AC > AB), ĐƯỜNG CAO AH. TRÊN TIA HC LẤY HD = HA, ĐƯỜNG VUÔNG GÓC VỚI BC TẠI D CẮT AC TẠI E.

a) CHỨNG MINH AE = AB

b) GỌI M LÀ TRUNG ĐIỂM BE . TÍNH GÓC AHM


BÀI 5: TỨ GIÁC ABCD CÓ CÓ GÓC A = GÓC B =90 ĐỘ VÀ AC = BD.

a) ABCD CÓ PHẢI LÀ HÌNH CHỮ NHẬT KHÔNG? C/M

b) LẤY ĐIỂM M NẰM GIỮA A,C. VẼ MK VUÔNG GÓC AB TẠI K , MH VUÔNG GÓC AD TẠI H. CHỨNG MINH HK // BD

C) TIA MH CẮT BC Ở E, TIA KM CẮT CD TẠI F. MD CẮT HF Ở I, MB CẮT KE TẠI J/ CHỨNG MINH HK + EF = 2IJ

2
12 tháng 10 2016

ai lam thi lam di 

22 tháng 12 2021

em thi

21 tháng 10 2021

Bài 1: 

a: Xét ΔABD có

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của DC

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

a: Xét ΔANM và ΔACB có 

AN/AC=AM/AB

\(\widehat{NAM}=\widehat{CAB}\)

Do đó: ΔANM\(\sim\)ΔACB

Suy ra: \(\widehat{ANM}=\widehat{ACB}\)

hay MN//BC

Xét tứ giác MNBC có MN//BC

nên MNBC là hình thang

mà MB=NC

nên MNBC là hình thang cân

b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)

nên ABCD là tứ giác nội tiếp

Xét đường tròn ngoại tiếp tứ giác ABCD có

\(\widehat{ADB}\) là góc nội tiếp chắn cung AB

\(\widehat{BDC}\) là góc nội tiếp chắn cung BC

mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)

nên \(\widehat{ADB}=\widehat{CDB}\)

hay DB là tia phân giác của góc ADC

24 tháng 11 2017

A B C E D F G M

Trên tia đối của BA lấy điểm G sao cho BG=DF.

Xét tam giác CDF và tam giác CBG:

CD=CB

^CDF=^CBG=900             => Tam giác CDF=Tam giác CBG(c.g.c)

DF=BG

=> CF=CG (2 cạnh tương ứng)

=> ^CFD=^CGB (2 góc tương ứng)

Ta có: Chu vi tam giác AEF=2a =>AE+AF+EF=2a (1)

Mà a là số đo cạnh của hình vuông ABCD => 2a=AB+AD (2)

Từ (1) và (2)=> AE+AF+EF=AB+AD

<=> AE+AF+EF=AE+AF+DF+BE <=> EF=DF+BE

Lại có: DF=BG => EF=BG+BE <=> EF=EG.

Xét tam giác EFC và tam giác EGC:

EF=EG

EC chung                => Tam giác EFC=Tam giác EGC (c.c.c)

CF=CG (cmt) 

=> ^EFC=^EGC (2 góc tương ứng) hay ^BGC=^MFC

Mà ^CFD=^CGB => ^MFC=^CFD

Xét tam giác CDF và tam giác CMF:

^CDF=^CMF=900

CF chung                             => Tam giác CDF=Tam giác CMF (Cạnh huyền góc nhọn)

^CFD=^MFC 

=> CD=CM (2 cạnh tương ứng) => CM=a

Mà giá trị của a không đổi (vì là số đo cạnh hình vuông)

=> Độ dài CM không ddổi (đpcm).

24 tháng 11 2017

Kurokawa Neko làm đung

Giá trị của a ko thay đổi vì  số đo cạnh góc vuông

Vậy độ dài CM ko thay đổi