Cho hình vuông ABCD có cạnh=1. M,N lần lượt nằm trên AB,AC sao cho chu vi tam giác AMN=2. CHứng minh rằng góc MCN=45 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của DC
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
a: Xét ΔANM và ΔACB có
AN/AC=AM/AB
\(\widehat{NAM}=\widehat{CAB}\)
Do đó: ΔANM\(\sim\)ΔACB
Suy ra: \(\widehat{ANM}=\widehat{ACB}\)
hay MN//BC
Xét tứ giác MNBC có MN//BC
nên MNBC là hình thang
mà MB=NC
nên MNBC là hình thang cân
b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
\(\widehat{BDC}\) là góc nội tiếp chắn cung BC
mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của góc ADC
Trên tia đối của BA lấy điểm G sao cho BG=DF.
Xét tam giác CDF và tam giác CBG:
CD=CB
^CDF=^CBG=900 => Tam giác CDF=Tam giác CBG(c.g.c)
DF=BG
=> CF=CG (2 cạnh tương ứng)
=> ^CFD=^CGB (2 góc tương ứng)
Ta có: Chu vi tam giác AEF=2a =>AE+AF+EF=2a (1)
Mà a là số đo cạnh của hình vuông ABCD => 2a=AB+AD (2)
Từ (1) và (2)=> AE+AF+EF=AB+AD
<=> AE+AF+EF=AE+AF+DF+BE <=> EF=DF+BE
Lại có: DF=BG => EF=BG+BE <=> EF=EG.
Xét tam giác EFC và tam giác EGC:
EF=EG
EC chung => Tam giác EFC=Tam giác EGC (c.c.c)
CF=CG (cmt)
=> ^EFC=^EGC (2 góc tương ứng) hay ^BGC=^MFC
Mà ^CFD=^CGB => ^MFC=^CFD
Xét tam giác CDF và tam giác CMF:
^CDF=^CMF=900
CF chung => Tam giác CDF=Tam giác CMF (Cạnh huyền góc nhọn)
^CFD=^MFC
=> CD=CM (2 cạnh tương ứng) => CM=a
Mà giá trị của a không đổi (vì là số đo cạnh hình vuông)
=> Độ dài CM không ddổi (đpcm).
Kurokawa Neko làm đung
Giá trị của a ko thay đổi vì số đo cạnh góc vuông
Vậy độ dài CM ko thay đổi
Cho hình vuông $ABCD$ có cạnh bằng $1$. Trên $BC$ lấy $M, CD$ lấy $N$ sao cho chu vi tam giác $MCN$ bằng 2. Tính góc $MAN$ - Hình học - Diễn đàn Toán học
Tham khảo nhé. Đây là toán lớp 7. Năm ngoái mình thi