K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2019

2D = 2101 - 2100 + 299 -...+2

2D+D= 2101+1

D=...

Bạn tự tính nhé nhớ k cho mình đấy

18 tháng 4 2016

b) B = 2100 - 299 + 298 - 297 + ...+ 22 - 2

=> B x 2 = 2101 - 2100 + 299 -  298  + ...23 - 22

=> B x 2 + B = (2101 - 2100 + 299 -  298  + ...23 - 22 ) + (2100 - 299 + 298 - 297 + ...+ 22 - 2)

  <=>  B x 3 = 2101 - 2 = 2. ( 299 - 1)

=> B = \(\frac{2.\left(2^{99}-1\right)}{3}\)

Phần c) Làm tương tự Lấy C x 3 rồi + với C.

29 tháng 7 2019

a)

C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.

b)

B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.

Ta có :

B = 2100 - 299 + 298 - 297 + ... + 22 - 2 + 1

=> B = ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )

=> 22B = 2 . [ ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 ) ]

=> 4B = ( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )

=> 4B - B = [( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )] - [( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )]

=> 3B = ( 2102 - 1 ) + ( 2 - 2101 )

=> 3B = 2101 - 1

=> B = \(\frac{2^{101} - 1}{3}\)

gọi dãy số là A, ta có:

A = 2100 - 299 - ...... - 21

2A = 2101 - 2100 - .... - 22

2A = ( 2101 - ... - 22 ) - ( 2100 - ... - 2 )

A = 2101 - 2

27 tháng 9 2019

A = 2100 - 299 + 298 - 297 +...+ 22 - 2

=> 2A = 2101 - 2100+299 - 298+...+23-22

=> 2A+A= 2101 -2

=> \(A=\frac{2^{101}-2}{3}\)

phần B bn lm tương tự nha!
 

1 tháng 5 2017

a) A =1+3+32+33+...+3100

   3A = 3 + 32+33+...+3101

   3A-A=( 3 + 32+33+...+3101)-(1+3+32+33+...+3100)

    2A = 3101-1

    A = \(\frac{3^{101}-1}{2}\)

    Thùy An làm sai rùi

2 tháng 8 2016

a) A=1+3+3^2+...+3^100

3A=3+3^2+....+3^101

3A-A=1+3^101

A=(1+3^101)/2

3 tháng 2 2019

a,M=2^0-2^1+2^2-2^3+2^4-2^5+.....+2^2012

2M=2^1-2^2+2^3-2^4+2^5-2^5+......-2^2012+2^2013

3M=2^0+2^2013

M=(2^0+2^2013)÷3

Vậy.......

b,N=3-3^2+3^3-3^4+3^5-3^6+.....+3^2011-3^2012

3N=3^2-3^3+3^4-3^5+3^6-3^7+......+3^2012-3^2013

4N=3-3^2013

N=(3-3^2013)÷4

Vậy........

K tao nhé ko lên lớp tao đánh m😈😈😈

3 tháng 2 2019

Bt dễ thế mà ko làm dc😂😂😂😂😂

9 tháng 7 2023

\(A=1-2+3-4+5-6+7-8+...+99-100\)

\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)

\(A=\left(-1\right).50\)

\(A=-50\)

\(B=1+3-5-7+9+11-...-397-399\)

\(B=1-2+2-2+2-...+2-2-399\)

\(B=1-399\)

\(B=-398\)

\(C=1-2-3+4+5-6-7+...+97-98-99+100\)

\(C=-1+1-1+1-...-1+1\)

\(C=0\)

\(D=2^{2024}-2^{2023}-...-1\)

\(D=2^{2024}-\left(2^0+2^1+2^2+...2^{2023}\right)\)

\(D=2^{2024}-\left(\dfrac{2^{2024}-1}{2-1}\right)\)

\(D=2^{2024}-\left(2^{2024}-1\right)\)

\(D=2^{2024}-2^{2024}+1\)

\(D=1\)

9 tháng 7 2023

A = 1 - 2 + 3  - 4 + 5 - 6 + 7 - 8 +...+ 99 - 100

A = (1 - 2) + ( 3 - 4) + ( 5- 6) +....+(99 - 100)

Xét dãy số 1; 3; 5;...;99

Dãy số trên là dãy số cách đều có khoảng cách là: 3 - 1 = 2

Dãy số trên có số số hạng là: (99 - 1) : 2 + 1 = 50 (số)

Vậy tổng A có 50 nhóm, mỗi nhóm có giá trị là: 1- 2 = -1

A =  - 1\(\times\)50 = -50

b, 

B = 1 + 3 - 5 - 7 + 9 + 11-...- 397 - 399

B = ( 1 + 3 - 5 - 7) + ( 9 + 11 - 13 - 15) + ...+( 393 + 395 - 397 - 399)

B = -8 + (-8) +...+ (-8)

Xét dãy số 1; 9; ...;393

Dãy số trên là dãy số cách đều có khoảng cách là: 9-1 = 8

Dãy số trên có số số hạng là: ( 393 - 1): 8 + 1 = 50 (số hạng)

Tổng B có 50 nhóm mỗi nhóm có giá trị là -8

B = -8 \(\times\) 50 = - 400

c, 

C = 1 - 2 - 3 + 4 + 5 -  6 +...+ 97 - 98 - 99 +100

C = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7+ 8) +...+ ( 97 - 98 - 99 + 100)

C = 0 + 0 + 0 +...+0

C = 0

d,   D =           22024 - 22023- ... +2 - 1

    2D = 22005- 22004 + 22003+...- 2

2D + D = 22005 - 1

 3D      = 22005 - 1

   D      = (22005 - 1): 3

Ta có:

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(\Rightarrow A=\left(-2\right)^{100}+\left(-2\right)^{99}+\left(-2\right)^{98}+\left(-2\right)^{97}+...+\left(-2\right)^2+\left(-2\right)\)\(\Rightarrow-2A=\)\(\left(-2\right)^{101}+\left(-2\right)^{100}+\left(-2\right)^{99}+\left(-2\right)^{98}+...+\left(-2\right)^3+\left(-2\right)^2\)

\(\Rightarrow-2A-A=\left(-2\right)^{101}-\left(-2\right)\)

\(\Rightarrow-3A=\left(-2\right)^{101}+2\)

\(\Rightarrow A=\frac{2-2^{101}}{-3}\)

28 tháng 2 2020

\(A=2^{100}-2^{99}+2^{98}-2^{97}+.....+2^2-2 \)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+......+2^3-2^2\)\(2A+A=2^{101}-2^{100}+2^{99}-2^{98}+.....+2^3-2^2+2^{100}-2^{99}+2^{98}-2^{97}+.....+2^2-2\)\(2A+A=2^{101}-2\)

\(3A=2^{101}-2\)