1x3x5+3x5x7+5x7x9+...+97x99x101
Giúp với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=9\left(\dfrac{4}{1\cdot3\cdot5}+\dfrac{4}{3\cdot5\cdot7}+...+\dfrac{4}{25\cdot27\cdot29}\right)\)
\(=9\left(\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{25\cdot27}-\dfrac{1}{27\cdot29}\right)\)
\(=9\left(\dfrac{1}{3}-\dfrac{1}{783}\right)=\dfrac{260}{87}\)
\(\frac{4}{1x3x5}+\frac{4}{3x5x7}+...+\frac{4}{9x11x13}\)
\(=\frac{1}{1x3}-\frac{1}{3x5}+\frac{1}{3x5}-...+\frac{1}{9x11}-\frac{1}{11x13}\)
\(=\frac{1}{3}-\frac{1}{143}\)
\(=\frac{140}{429}\)
\(\dfrac{4}{1\times3\times5}+\dfrac{4}{3\times5\times7}+\dfrac{4}{5\times7\times9}+\dfrac{4}{7\times9\times11}\)
=\(\dfrac{5-1}{1\times3\times5}+\dfrac{7-3}{3\times5\times7}+\dfrac{9-5}{5\times7\times9}+\dfrac{11-7}{7\times9\times11}\)
=\(\dfrac{1}{1\times3}-\dfrac{1}{3\times5}+\dfrac{1}{3\times5}-\dfrac{1}{5\times7}+...+\dfrac{1}{9\times11}-\dfrac{1}{11\times13}\)
=\(\dfrac{1}{3}-\dfrac{1}{143}=\dfrac{140}{429}\)
\(\dfrac{3}{1\cdot3\cdot5}+\dfrac{3}{3\cdot5\cdot7}+\dfrac{3}{5\cdot7\cdot9}+\cdot\cdot\cdot+\dfrac{3}{37\cdot39\cdot41}\)
\(=\dfrac{3}{4}\left(\dfrac{4}{1\cdot3\cdot5}+\dfrac{4}{3\cdot5\cdot7}+\dfrac{4}{5\cdot7\cdot9}+\cdot\cdot\cdot+\dfrac{4}{37\cdot39\cdot41}\right)\)
\(=\dfrac{3}{4}\left(\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+\dfrac{1}{5\cdot7}-\dfrac{1}{7\cdot9}+\cdot\cdot\cdot+\dfrac{1}{37\cdot39}-\dfrac{1}{39\cdot41}\right)\)
\(=\dfrac{3}{4}\left(\dfrac{1}{3}-\dfrac{1}{39\cdot41}\right)\)
\(=\dfrac{3}{4}\cdot\dfrac{532}{1599}=\dfrac{133}{533}\)
#Ayumu
1.3.5+3.5.(