Cho tứ giác ABCD có AB=AC=AD.DB là tia phân giác của góc ADC. Hỏi tứ gics ABCD là hình gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{DAC}\)
nên \(\widehat{DAC}=\widehat{BCA}\)
mà hai góc ở vị trí so le trong
nên AD//BC
hay ABCD là hình thang
ta có tam giác BCD cân tại C
=>góc CDB bằng góc CBD
=>BC//AD(goc ADB = gocCBD)
=>DPCM ABCD là hình thang
Học tốt
\(DB\)là phân giác \(\widehat{ADC}\)suy ra \(\widehat{ADB}=\widehat{CDB}\)(1)
\(BC=CD\)suy ra \(\Delta CBD\)cân tại \(C\)suy ra \(\widehat{CBD}=\widehat{CDB}\)(2)
(1)(2) suy ra \(\widehat{ADB}=\widehat{CBD}\)
mà hai góc này ở vị trí so le trong suy ra \(BC//AD\).
Suy ra \(ABCD\)là hình thang.
Xét ΔACB có AB=AC
nên ΔACB cân tại A
Suy ra: \(\widehat{ABC}=\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{DCB}\)
nên \(\widehat{ABC}=\widehat{DCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
hay ABDC là hình thang
bạn chứng minh ngược với bài này là được:
đề: Cho tứ giác ABCD Có Â+C^=180 độ và AC là phân giác góc BÂD Chứng minh CB=CD?
Giải:
Trên cạnh AD lấy điểm E sao cho AE = AB
Xét tam giác ABC và AEC có
AB = AE
góc BAC = góc EAC (AC là phân giác góc BAD )
AC là cạnh chung
=> tam giác ABC = tam giác AEC ( c - g - c )
=> BC = CE và góc ABC = góc AEC
tứ giác ABCD có góc A + góc B + góc C + góc D = 360 độ
mà góc A + góc C = 180 độ => góc B + góc D = 180 độ
từ góc ABC góc AEC và góc DEC + góc AEC = 180 độ => góc DEC = góc D
Do vậy tam giác CDE cân đỉnh C => DC = CE
từ BC = CE , DC = CE => BC = DC ( đpcm)
a. Ta có: AD = AB
=> \(\Delta ABD\) là tam giác cân
=> Góc ADB = góc ABD (1)
Mà góc ABD = góc BDC (so le trong) (2)
Từ (1) và (2), suy ra:
BD là tia phân giác của góc ADC
b. Nối AC
Xét 2 tam giác ABC và ABD có:
AD = BC (gt)
AB chung
=> \(\Delta ABD\sim\Delta ABC\) (1)
Ta có: AD = AB = BC (2)
Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)
=> Góc A = góc B
Ta có: AB//CD
=> Góc D + góc A = 90o (2 góc trong cùng phía)
Mà góc A = góc B
=> Góc C = góc D
=> ABCD là hình thang cân
Vì \(\Delta ABC\) cân tại B ( vì AB =BC)
=> Góc BAC = góc BCA (1)
Vì AC là phân giác góc A
=> góc BAC = góc CAD (2)
Từ (1) và (2) => góc BCA = góc CAD
Mà 2 góc này ở vị trí so le trong
=> AD // BC
=> ABCD là hình thang
Vậy ________________