K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBAC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{DAC}\)

nên \(\widehat{DAC}=\widehat{BCA}\)

mà hai góc ở vị trí so le trong

nên AD//BC

hay ABCD là hình thang

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm !$$%

3 tháng 7 2021

ta có tam giác BCD cân tại C

=>góc CDB bằng góc CBD

=>BC//AD(goc ADB = gocCBD) 

=>DPCM ABCD là hình thang

                     Học tốt

DD
3 tháng 7 2021

\(DB\)là phân giác \(\widehat{ADC}\)suy ra \(\widehat{ADB}=\widehat{CDB}\)(1)

\(BC=CD\)suy ra \(\Delta CBD\)cân tại \(C\)suy ra \(\widehat{CBD}=\widehat{CDB}\)(2)

(1)(2) suy ra \(\widehat{ADB}=\widehat{CBD}\)

mà hai góc này ở vị trí so le trong suy ra \(BC//AD\).

Suy ra \(ABCD\)là hình thang. 

Xét ΔACB có AB=AC

nên ΔACB cân tại A

Suy ra: \(\widehat{ABC}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{DCB}\)

nên \(\widehat{ABC}=\widehat{DCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC

hay ABDC là hình thang

26 tháng 6 2016

bạn chứng minh ngược với bài này là được: 

đề: Cho tứ giác ABCD Có Â+C^=180 độ và AC là phân giác góc BÂD Chứng minh CB=CD?

Giải:

 Trên cạnh AD lấy điểm E sao cho AE = AB 
Xét tam giác ABC và AEC có 
AB = AE 
góc BAC = góc EAC (AC là phân giác góc BAD ) 
AC là cạnh chung 
=> tam giác ABC = tam giác AEC ( c - g - c ) 
=> BC = CE và góc ABC = góc AEC 
tứ giác ABCD có góc A + góc B + góc C + góc D = 360 độ 
mà góc A + góc C = 180 độ => góc B + góc D = 180 độ 
từ góc ABC góc AEC và góc DEC + góc AEC = 180 độ => góc DEC = góc D 
Do vậy tam giác CDE cân đỉnh C => DC = CE 
từ BC = CE , DC = CE => BC = DC ( đpcm) 

30 tháng 8 2021

Hình vẽ minh hoạ undefined

30 tháng 8 2021

a. Ta có: AD = AB 

=> \(\Delta ABD\) là tam giác cân

=> Góc ADB = góc ABD (1)

Mà góc ABD = góc BDC (so le trong) (2)

Từ (1) và (2), suy ra:

BD là tia phân giác của góc ADC

b. Nối AC

Xét 2 tam giác ABC và ABD có:

AD = BC (gt)

AB chung

=> \(\Delta ABD\sim\Delta ABC\) (1)

Ta có: AD = AB = BC (2)

Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)

=> Góc A = góc B

Ta có: AB//CD

=> Góc D + góc A = 90o (2 góc trong cùng phía)

Mà góc A = góc B

=> Góc C = góc D

=> ABCD là hình thang cân

4 tháng 8 2015

Vì \(\Delta ABC\) cân tại B ( vì AB =BC) 

=> Góc BAC = góc BCA (1) 

Vì AC là phân giác góc A 

=> góc BAC = góc CAD (2) 

Từ (1) và (2) => góc BCA = góc CAD 

Mà 2 góc này ở vị trí so le trong

=> AD // BC 

=>  ABCD là hình thang

Vậy ________________