K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

Bạn tham khảo tại đây:

Câu hỏi của Mika Yuuichiru - Toán lớp 8 - Học toán với OnlineMath

29 tháng 6 2016

a) Ta có: \(a+b+c=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(b+a+c\right)\right]\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow a^4+b^4+c^4=4\left(a^2b^2+b^2c^2+c^2a^2\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

29 tháng 6 2016

b) Ta có: \(a+b+c=0\)

\(\Rightarrow2abc\left(a+b+c\right)=0\)

\(\Rightarrow2a^2bc+2ab^2c+2abc^2=0\)

Ta lại có:

\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)^2\)(chứng minh câu a)

\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+4a^2bc+4ab^2c+4abc^2\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)

17 tháng 7 2018

Bỏ đi phần a=b=c =0 mới giải được nha .

Ta có :

Bình phương 2 vế của a+b+c =0   ta được :

\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)(1)

Bình phương 2 vế của (1) ta được :

\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

6 tháng 8 2017

co a+b+c=0 =>b+c=-a

suy ra (b+c)2=(-a)2  hay b2+2bc+c2 =a2

hay b2+c2-a2 =-2bc

Suy ra (b2 + c2 - a)2 =( -2bc)2

<=> b+c4 +a+2b2c2 -2a2b2 -2a2c2 = 4b2c2

<=> a4+b4+c4 =2a2b2+2b2c2+2c2a2

<=> 2(a4+b4+c4) = a4+b4+c4+2a2b2+2b2c2+2c2a2

<=> a2+b2+c2 =2(a4+b4+c4) (dpcm)

Giá trị này trong nào chả bằng 0

13 tháng 8 2017

a + b + c = 0
<=> (a + b + c)² = 0
<=> a² + b² + c² + 2(ab + bc + ca) = 0
<=> a² + b² + c² = -2(ab + bc + ca) (1)

CẦn chứng minh:

2(a^4 + b^4 + c^4) = (a² + b² + c²)²

<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²)

<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²)

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) )

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1))

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²)

<=> 8.(ab²c + bc²a + a²bc) = 0

<=> 8abc.(a + b + c) = 0

<=> 0 = 0 (đúng), Vì a + b + c = 0

=> Đpcm

13 tháng 8 2017

a + b + c = 0

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2.\left(ab+bc+ca\right)\left(1\right)\)

Cần phải chứng minh

2.(a4 + b4 + c4)=(a2+b2+c2)

\(\Leftrightarrow\) 2.(a4 - b4+c4)=a4+b4+c4+2.(a2b2+b2c2+c2a2)

\(\Leftrightarrow\)a4 +b4+c4=2.(a2b2+b2c2+c2a2)

\(\Leftrightarrow\) (a2 + b2 +c2 ) = 4(a2b2+b2c2 +c2a2)

\(\Leftrightarrow\) [ -2.(ab+bc+ca)2 ] = 4(a2b2+b2c2 +c2a2)

\(\Leftrightarrow\) 4(a2b2+b2c2 +c2a2)+8.(ab2c +bc2a+a2bc)=4.(a2b+b2c2+c2+a2

\(\Leftrightarrow\) 8(ab2c+bc2a+a2bc)=0

\(\Leftrightarrow\)8abc.(a+b+c)=0

\(\Leftrightarrow\) 0 =0 (đúng ) Vì a +b +c =0

=> ĐPCM

13 tháng 10 2016

Ta có :

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0^2\)

\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc\right)\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4a^2b^2+4b^2c^2+4a^2c^2+8ab^2c+8abc^2+8a^2bc\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4a^2b^2+4b^2c^2+4a^2c^2+8abc\left(a+b+c\right)\)

Mà \(a+b+c=0\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4a^2b^2+4b^2c^2+4a^2c^2\)

Bớt cả 2 vế đi\(2a^2b^2+2b^2c^2+2a^2c^2\)có :

\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2a^2c^2\)

Lại cộng cả 2 vế cho \(a^4+b^4+c^4;\)có :

\(\Rightarrow a^4+b^4+c^4+a^4+b^4+c^4=+a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2\)

\(\Rightarrow2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow a^4+b^4+c^4=\frac{\left(a^2+b^2+c^2\right)^2}{2}\)

Vậy ...

1 tháng 6 2021

b) Áp dụng bđt Holder ta có:

\(\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)\left(a^2\left(b+c\right)^2+b^2\left(c+a\right)^2+c^2\left(a+b\right)^2\right)\ge\left(a^2+b^2+c^2\right)^3\)

Lại có \(a^2\left(b+c\right)^2+b^2\left(c+a\right)^2+c^2\left(a+b\right)^2\le2a^2\left(b^2+c^2\right)+2b^2\left(c^2+a^2\right)+2c^2\left(a^2+b^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\sqrt{\dfrac{\left(a^2+b^2+c^2\right)^3}{4\left(a^2b^2+b^2c^2+c^2a^2\right)}}\).

Ta chỉ cần chứng minh: \(\dfrac{\sqrt[4]{27\left(a^4+b^4+c^4\right)}}{2}\le\sqrt{\dfrac{\left(a^2+b^2+c^2\right)^3}{4\left(a^2b^2+b^2c^2+c^2a^2\right)}}\Leftrightarrow27\left(a^4+b^4+c^4\right)\left(a^2b^2+b^2c^2+c^2a^2\right)^2\le\left(a^2+b^2+c^2\right)^3\).

Áp dụng bđt AM - GM ta có \(27\left(a^4+b^4+c^4\right)\left(a^2b^2+b^2c^2+c^2a^2\right)^2\le\left(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\right)=\left(a^2+b^2+c^2\right)^2\).

Vậy ta có đpcm.

1 tháng 6 2021

a) Câu này cũng tương tự: Áp dụng bđt Holder ta có:

\(\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\ge\left(a^2+b^2+c^2\right)^3\).

Đến đây làm tương tự là ok