K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

1)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow ac-ad=ac-bc\Leftrightarrow a\left(c-d\right)=c\left(a-b\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

2) Gọi độ dài các cạnh của tam giác đó là a,b,c thì a : b : c = 3 : 4 : 5 ; a + b + c = 36

\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\Rightarrow\hept{\begin{cases}a=3.3=9\\b=3.4=12\\c=3.5=15\end{cases}}\).Vậy tam giác đó có 3 cạnh là 9 cm ; 12 cm ; 15 cm

3)\(\hept{\begin{cases}a:b:c:d=3:4:5:6\\a+b+c+d=3,6\end{cases}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}=\frac{a+b+c+d}{3+4+5+6}=\frac{3,6}{18}=0,2}\)

=> a = 0,2.3 = 0,6 ; b = 0,2.4 = 0,8 ; c = 0,2.5 = 1 ; d = 0,2.6 = 1,2

4)\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}:5=\frac{y}{2}:5\Leftrightarrow\frac{x}{15}=\frac{y}{10}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}:2=\frac{z}{7}:2\Leftrightarrow\frac{y}{10}=\frac{z}{14}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{14}=\frac{x+y+z}{15+10+14}=\frac{184}{39}=4\frac{28}{39}\Rightarrow\hept{\begin{cases}x=4\frac{28}{39}.15=70\frac{10}{13}\\y=4\frac{28}{39}.10=47\frac{7}{39}\\z=4\frac{28}{39}.14=66\frac{2}{39}\end{cases}}\)

9 tháng 11 2016

câu 3,4 bạn làm tỉ lệ thức là xong

5 tháng 7 2017

1.

a:b:c:d = 2:3:4:5 => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)

=> a = -3.2 = -6

b = -3.3 = -9

c = -3.4 = -12

d = -3.5 = -15

2.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{18}=\frac{a+2b-3c}{2+6-18}=-\frac{20}{-10}=2\)

=> a = 4

b = 6

c = 8

3.

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)

=> a2 = 4.4 = 16 => a = +-4

b2 = 4.9 = 36 => b = +-6

2c2 = 4.32 = 128 => c2 = 64 => c = +-8

22 tháng 9 2019

Ta có : \(\frac{b}{a}=2\Leftrightarrow b=2a\)và \(\frac{c}{b}=3\Leftrightarrow c=3b=3\cdot2a=6a\)

Do đó \(\frac{a+b}{b+c}=\frac{a+2a}{2a+6a}=\frac{3a}{8a}=\frac{3}{8}\)

Vậy \(\frac{a+b}{b+c}=\frac{3}{8}\)

23 tháng 9 2019

Với \(b+c;a;c\ne0\)

=> Khi \(\frac{b}{a}=2\Rightarrow b=2a;\)

Khi\(\frac{c}{b}=3\Rightarrow c=3b\)

Khi đó \(\frac{a+b}{b+c}=\frac{a+2a}{b+3b}=\frac{3a}{4b}=\frac{3a}{4.2a}=\frac{3a}{8a}=\frac{3}{8}\)

Vậy khi \(\frac{b}{a}=2;\frac{c}{b}=3\)thì \(\frac{a+b}{b+c}=\frac{3}{8}\)

23 tháng 9 2019

\(\frac{a+b}{b+c}=\frac a b +\frac b c =\frac 1 2 + \frac 1 3 = \frac 5 6\)

24 tháng 10 2018

\(1,\)

\(a,\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\left(đpcm\right)\)

\(b,\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)

\(\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

\(2,\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2.\left(a+b+c\right)}=\dfrac{1}{2}\)

\(3,\)

\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)

\(\Rightarrow\text{​​}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\text{​​}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}=\dfrac{2a+13b+3a-7b}{2c+13d+3c-7d}=\dfrac{5a+6b}{5c+6d}\)

\(\Rightarrow\dfrac{5a}{5c}=\dfrac{6b}{6d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

\(4,\) https://hoc24.vn/hoi-dap/question/157445.html

7 tháng 10 2015

\(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\Rightarrow x.y=2k.5k=10\Rightarrow10k^2=10\Rightarrow k^2=1\Rightarrow k\in\left\{1;-1\right\}\)

k=1 thì \(\frac{x}{2}=\frac{y}{5}=1\Rightarrow x=2;y=5\)

k=-1 thì \(\frac{x}{2}=\frac{y}{5}=-1\Rightarrow x=-2;y=-5\)

19 tháng 11 2018

\(\frac{a-b}{d-c}=\frac{3}{8}\)

\(\Rightarrow8\left(a-b\right)=3\left(d-c\right)\)

\(\Leftrightarrow8a-8b=3d-3c\)

Thay 8b = 3c

\(8a-3c=3d-3c\)

\(\Leftrightarrow8a=3d\)

\(\Leftrightarrow\frac{a}{d}=\frac{3}{8}\)

19 tháng 6 2019

1)

\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{8}=2\Rightarrow x=16\\\frac{y}{12}=2\Rightarrow x=24\\\frac{z}{15}=2\Rightarrow z=30\end{matrix}\right.\)

2)

Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)

xy=10 <=> 2k.5k=10

<=>10k2=10

<=> k=1

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)

3)

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)

\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)

\(\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)