Cho A= 4^17 + 4^18 + 4^19 + 4^20 + 4^17 . 995
Chứng minh A⋮9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(\frac{14}{6}+\frac{1}{9}+\frac{19}{13}+\frac{17}{9}+\frac{7}{13}+\frac{4}{6}\)
\(=\left(\frac{14}{6}+\frac{4}{6}\right)+\left(\frac{1}{9}+\frac{17}{9}\right)+\left(\frac{19}{13}+\frac{7}{13}\right)\)
\(=\frac{18}{6}+\frac{18}{9}+\frac{26}{13}\)
\(=3+2+2\)
\(=7\)
b,
\(\frac{995}{997}x\frac{990}{993}x\frac{997}{990}x\frac{993}{995}x\frac{97}{95}\)
\(=\frac{995x990x997x993x97}{997x993x990x995x95}\)
\(=\frac{97}{95}\)
(Cùng triệt tiêu 995 ; 990 ; 997 ; 993 )
b)\(B=\dfrac{3}{2}+\dfrac{13}{12}+\dfrac{31}{30}+...+\dfrac{9901}{9900}\)
\(=1+\dfrac{1}{2}+1+\dfrac{1}{12}+1+\dfrac{1}{30}+...+1+\dfrac{1}{9900}\)
\(=1+1+1+...+1\left(50cs\right)+\dfrac{1}{2}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
\(=50+\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+...+\dfrac{1}{9900}\)
\(C=\dfrac{5}{6}+\dfrac{19}{20}+\dfrac{41}{42}+...+\dfrac{10099}{10100}\)
\(=\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{20}\right)+\left(1-\dfrac{1}{42}\right)+...+\left(1-\dfrac{1}{10100}\right)\)
\(=1+1+...+1\left(50cs\right)-\dfrac{1}{6}-\dfrac{1}{20}-\dfrac{1}{42}-...-\dfrac{1}{10100}\)
\(B-C=\left(50+\dfrac{1}{2}+\dfrac{1}{12}+...+\dfrac{1}{9900}\right)-\left(50-\dfrac{1}{6}-\dfrac{1}{20}-...-\dfrac{1}{10100}\right)\)
\(=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}+\dfrac{1}{10100}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{100.101}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)
Chúc Bạn Học Tốt và Đạt nhiều thành tích tốt !!!
\(E=1.2.3+2.3.4+3.4.5+...+18.19.20\)
\(4E=1.2.3.4+2.3.4.4+3.4.5.4+...+18.19.20.4\)
\(4E=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+18.19.20.\left(21-17\right)\)
\(4E=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+18.19.20.21-17.18.19.20\)
\(4E=18.19.20.21\)
\(4E=143640\)
\(E=\frac{143640}{4}\)
\(E=35910\)
Chúc bạn học tốt ~
\(G=2.4.6+4.6.8+6.8.10+...+18.20.22\) ( xem lại đề có nhầm dấu ko nha bn )
\(8G=2.4.6.8+4.6.8.8+6.8.10.8+...+18.20.22.8\)
\(8G=2.4.6.8+4.6.8.\left(10-2\right)+6.8.10.\left(12-4\right)+...+18.20.22\left(24-16\right)\)
\(8G=2.4.6.8+4.6.8.10-2.4.6.8+6.8.10.12-4.6.8.10+...+18.20.22.24-16.18.20.22\)
\(8G=18.20.22.24\)
\(8G=190080\)
\(G=\frac{190080}{8}\)
\(G=23760\)
Chúc bạn học tốt ~
\(A=4^{17}+4^{18}+4^{19}+4^{20}+4^{17}\left(999-4\right)\)
\(=4^{17}+4^{18}+4^{19}+4^{20}+999.4^{17}-4^{18}\)
\(=4^{17}+4^{19}+4^{20}+999.4^{17}\)
\(=4^{17}\left(1+4^2+4^3\right)+999.4^{17}\)
\(=81.4^{17}+999.4^{17}\)
\(\left\{{}\begin{matrix}81⋮9\\999⋮9\end{matrix}\right.\Rightarrow A⋮9\)